

A027693


a(n) = n^2 + n + 8.


6



8, 10, 14, 20, 28, 38, 50, 64, 80, 98, 118, 140, 164, 190, 218, 248, 280, 314, 350, 388, 428, 470, 514, 560, 608, 658, 710, 764, 820, 878, 938, 1000, 1064, 1130, 1198, 1268, 1340, 1414, 1490, 1568, 1648, 1730, 1814, 1900, 1988, 2078, 2170
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


LINKS

Muniru A Asiru, Table of n, a(n) for n = 0..4000
P. De Geest, Palindromic Quasi_Over_Squares of the form n^2+(n+X)
Index entries for linear recurrences with constant coefficients, signature (3, 3, 1).


FORMULA

a(n) = 2*n + a(n1) (with a(0)=8).  Vincenzo Librandi, Aug 05 2010
a(0)=8, a(1)=10, a(2)=14, a(n) = 3*a(n1)  3*a(n2) + a(n3).  Harvey P. Dale, Dec 13 2011
G.f.: (2*(74*x)*x8)/(x1)^3.  Harvey P. Dale, Dec 13 2011


MAPLE

with (combinat):seq(fibonacci(3, n)+n+7, n=0..46); # Zerinvary Lajos, Jun 07 2008


MATHEMATICA

f[n_]:=n^2+n+8; f[Range[0, 100]] (* Vladimir Joseph Stephan Orlovsky, Mar 12 2011 *)
LinearRecurrence[{3, 3, 1}, {8, 10, 14}, 60] (* Harvey P. Dale, Dec 13 2011 *)


PROG

(PARI) a(n)=n^2+(n+8) \\ Charles R Greathouse IV, Jun 17 2017
(GAP) List([0..50], n>n^2+n+8); # Muniru A Asiru, Jul 15 2018


CROSSREFS

Cf. A002061, A002378, A002522.
Sequence in context: A262708 A134321 A326386 * A196226 A250290 A228946
Adjacent sequences: A027690 A027691 A027692 * A027694 A027695 A027696


KEYWORD

nonn,easy


AUTHOR

Patrick De Geest


STATUS

approved



