login
A027692
a(n) = n^2 + n + 7.
7
7, 9, 13, 19, 27, 37, 49, 63, 79, 97, 117, 139, 163, 189, 217, 247, 279, 313, 349, 387, 427, 469, 513, 559, 607, 657, 709, 763, 819, 877, 937, 999, 1063, 1129, 1197, 1267, 1339, 1413, 1489, 1567, 1647, 1729, 1813, 1899, 1987, 2077, 2169, 2263, 2359, 2457, 2557
OFFSET
0,1
COMMENTS
Integers k for which the discriminant of x^3 - k*x - k is a square. - Jacob A. Siehler, Mar 14 2009
Integers k for which the Galois group of the polynomial x^3 - k*x - k over Q is a cyclic group of order 3. See Conrad, Corollary 2.5. - Peter Bala, Oct 17 2021
From Peter Bala, Nov 18 2021: (Start)
Integers k such that 4*k - 27 is a square.
Integers k for which the Galois group of the polynomial x^3 + k*(x + 1)^2 over Q is the cyclic group C_3 (apply Conrad, Corollary 2.5 and Uchida, Lemma 1).
For the primes in this list see A005471. (End)
LINKS
Koji Uchida, Class numbers of cubic cyclic fields, Journal of the Mathematical Society of Japan, Vol. 26, No. 3, 1974, pp. 447-453.
FORMULA
For n > 2: a(n) = A176271(n+1,4). - Reinhard Zumkeller, Apr 13 2010
a(n) = 2*n + a(n-1) (with a(0)=7). - Vincenzo Librandi, Aug 05 2010
G.f.: (-7 + 12*x - 7*x^2)/(x-1)^3. - R. J. Mathar, Feb 06 2011
a(n+1) = n^2 + 3*n + 9, see A005471. - R. J. Mathar, Jun 06 2019
a(n) mod 6 = A109007(n+2). - R. J. Mathar, Jun 06 2019
Sum_{n>=0} 1/a(n) = Pi*tanh(Pi*3*sqrt(3)/2)/(3*sqrt(3)). - Amiram Eldar, Jan 17 2021
From Elmo R. Oliveira, Oct 30 2024: (Start)
E.g.f.: exp(x)*(7 + 2*x + x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
MAPLE
A027692 := proc(n)
n*(n+1)+7 ;
end proc: # R. J. Mathar, Jun 06 2019
MATHEMATICA
f[n_]:=n^2+n+7; f[Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011 *)
PROG
(PARI) a(n)=n^2+n+7 \\ Charles R Greathouse IV, Jun 11 2015
(GAP) List([0..50], n->n^2+n+7); # Muniru A Asiru, Jul 15 2018
CROSSREFS
Cf. A002522, A005471 (subset of primes), A109007, A176271.
Sequence in context: A129069 A258616 A125866 * A343001 A297063 A185720
KEYWORD
nonn,easy
STATUS
approved