OFFSET
0,1
COMMENTS
Integers k for which the discriminant of x^3 - k*x - k is a square. - Jacob A. Siehler, Mar 14 2009
Integers k for which the Galois group of the polynomial x^3 - k*x - k over Q is a cyclic group of order 3. See Conrad, Corollary 2.5. - Peter Bala, Oct 17 2021
From Peter Bala, Nov 18 2021: (Start)
Integers k such that 4*k - 27 is a square.
Integers k for which the Galois group of the polynomial x^3 + k*(x + 1)^2 over Q is the cyclic group C_3 (apply Conrad, Corollary 2.5 and Uchida, Lemma 1).
For the primes in this list see A005471. (End)
LINKS
Muniru A Asiru, Table of n, a(n) for n = 0..3000
Patrick De Geest, Palindromic Quasi_Over_Squares of the form n^2+(n+X).
Koji Uchida, Class numbers of cubic cyclic fields, Journal of the Mathematical Society of Japan, Vol. 26, No. 3, 1974, pp. 447-453.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
For n > 2: a(n) = A176271(n+1,4). - Reinhard Zumkeller, Apr 13 2010
a(n) = 2*n + a(n-1) (with a(0)=7). - Vincenzo Librandi, Aug 05 2010
G.f.: (-7 + 12*x - 7*x^2)/(x-1)^3. - R. J. Mathar, Feb 06 2011
a(n+1) = n^2 + 3*n + 9, see A005471. - R. J. Mathar, Jun 06 2019
a(n) mod 6 = A109007(n+2). - R. J. Mathar, Jun 06 2019
Sum_{n>=0} 1/a(n) = Pi*tanh(Pi*3*sqrt(3)/2)/(3*sqrt(3)). - Amiram Eldar, Jan 17 2021
From Elmo R. Oliveira, Oct 30 2024: (Start)
E.g.f.: exp(x)*(7 + 2*x + x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
MAPLE
MATHEMATICA
f[n_]:=n^2+n+7; f[Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011 *)
PROG
(PARI) a(n)=n^2+n+7 \\ Charles R Greathouse IV, Jun 11 2015
(GAP) List([0..50], n->n^2+n+7); # Muniru A Asiru, Jul 15 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved