login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322594
a(n) = (4*n^3 + 12*n^2 - 4*n + 3)/3.
4
1, 5, 25, 69, 145, 261, 425, 645, 929, 1285, 1721, 2245, 2865, 3589, 4425, 5381, 6465, 7685, 9049, 10565, 12241, 14085, 16105, 18309, 20705, 23301, 26105, 29125, 32369, 35845, 39561, 43525, 47745, 52229, 56985, 62021, 67345, 72965, 78889, 85125, 91681, 98565
OFFSET
0,2
COMMENTS
a(n) is the number of evaluation points on the n-dimensional cube in Lyness's degree 7 cubature rule.
REFERENCES
Arthur H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall, 1971.
LINKS
Ronald Cools and Philip Rabinowitz, Monomial cubature rules since "Stroud": a compilation, Journal of Computational and Applied Mathematics Vol. 48 (1993), 309-326.
James Lu and David L. Darmofal, Higher-dimensional integration with gaussian weight for applications in probabilistic design, SIAM J. Sci. Comput. Vol. 26 (2004), 613-624.
James N. Lyness, Symmetric integration rules for hypercubes II. Rule projection and rule extension, Math. Comp. Vol. 19 (1965), 394-407.
FORMULA
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 5.
a(n) = a(n-1) + 4*A028387(n-1), n >= 1.
a(n) = 8*binomial(n, 3) + 16*binomial(n, 2) + 4*binomial(n, 1) + 1.
G.f.: (1 + x + 11*x^2 - 5*x^3)/(1 - x)^4
E.g.f.: (1/3)*(3 + 12*x + 24*x^2 + 4*x^3)*exp(x).
MATHEMATICA
Table[(4*n^3 + 12*n^2 - 4*n + 3)/3, {n, 0, 50}]
PROG
(Maxima) makelist((4*n^3 + 12*n^2 - 4*n + 3)/3, n, 0, 50);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved