login
A317751
Number of divisors d of n such that there exists a factorization of n into factors > 1 with GCD d.
6
0, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 3, 2, 2, 2, 3, 1, 2, 1, 3, 2, 2, 2, 5, 1, 2, 2, 3, 1, 2, 1, 3, 3, 2, 1, 4, 2, 3, 2, 3, 1, 3, 2, 3, 2, 2, 1, 3, 1, 2, 3, 4, 2, 2, 1, 3, 2, 2, 1, 5, 1, 2, 3, 3, 2, 2, 1, 4, 3, 2, 1, 3, 2, 2, 2, 3, 1, 3, 2, 3, 2, 2, 2, 4, 1, 3, 3, 5, 1, 2, 1, 3, 2
OFFSET
1,4
COMMENTS
Also the number of distinct possible GCDs of factorizations of n into factors > 1.
Also the number of nonzero terms in row n of A317748.
a(prime^n) = A008619(n).
If n is squarefree and composite, a(n) = 2.
EXAMPLE
The divisors of 36 that are possible GCDs of factorizations of 36 are {1, 2, 3, 6, 36}, so a(36) = 5.
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
goc[n_, m_]:=Length[Select[facs[n], And[And@@(Divisible[#, m]&/@#), GCD@@(#/m)==1]&]];
Table[Length[Select[Divisors[n], goc[n, #]!=0&]], {n, 100}]
PROG
(PARI)
A317751aux(n, m, facs, gcds) = if(1==n, setunion([gcd(Vec(facs))], gcds), my(newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs, d); gcds = setunion(gcds, A317751aux(n/d, d, newfacs, gcds)))); (gcds));
A317751(n) = if(1==n, 0, length(A317751aux(n, n, List([]), Set([])))); \\ Antti Karttunen, Sep 08 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 06 2018
EXTENSIONS
More terms from Antti Karttunen, Sep 08 2018
STATUS
approved