login
A238949
Degree of divisor lattice D(n).
5
0, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 3, 2, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 4, 1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 3, 2, 3, 2, 3, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 3, 2, 2, 3, 1, 3, 2, 3, 1, 4, 1, 2, 3, 3, 2, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3, 1, 4, 2, 3, 2, 2, 2, 3, 1, 3, 3, 4, 1, 3, 1, 3, 3
OFFSET
1,4
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000 (terms 1..200 from Sung-Hyuk Cha)
Sung-Hyuk Cha, Edgar G. DuCasse, and Louis V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arXiv:1405.5283 [math.NT], 2014.
FORMULA
a(n) = A001221(n) + A056170(n) as given in the Cha, DuCasse, Quintas reference. - Geoffrey Critzer, Mar 02 2015
Additive with a(p^e) = 1+A057427(e-1). - Antti Karttunen, Jul 23 2017
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} 1/p^2 (A085548). - Amiram Eldar, Feb 13 2024
MATHEMATICA
Prepend[Table[Total[FactorInteger[n][[All, 2]] /. x_ /; x > 1 -> 2], {n, 2, 85}], 0] (* Geoffrey Critzer, Mar 02 2015 *)
PROG
(PARI) a(n) = {my(f = factor(n)); sum(i=1, #f~, 1 + (f[i, 2] > 1)); } \\ Michel Marcus, Mar 03 2015
(Scheme) (define (A238949 n) (if (= 1 n) 0 (+ 1 (A057427 (+ -1 (A067029 n))) (A238949 (A028234 n))))) ;; Antti Karttunen, Jul 23 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Sung-Hyuk Cha, Mar 07 2014
EXTENSIONS
More terms from Antti Karttunen, Jul 23 2017
STATUS
approved