login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238947
Numbers n such that n^2 + 1 = p*q, p < q primes and q-p is a power of 2.
1
8, 100, 3524, 5084, 36680, 77980, 21474824, 134201344, 148647496, 300741464, 73851531256, 153122539756, 778318386944, 6669171349484, 16526971109344, 596403262068016, 9376599920124524, 26698166963373164, 140144514160214876, 1613032378604451500
OFFSET
1,1
COMMENTS
Note that if n^2+1 = p*q, then p+q cannot be a power of 2. Proof by contradiction: There are two cases: p an odd prime and p=2. Case 1: suppose p and q are odd primes and q = 2^m-p. Then p(2^m-p) = n^2+1 for some even n. Rearranging terms, we obtain p*2^m-1 = p^2+n^2. Looking at this equation modulo 4, we obtain -1 = 1, a contradiction. Case 2: Let p=2. Then we obtain 2^(m+1)-n^2 = 5, which has no solutions in integers.
EXAMPLE
8^2+1 = 65 = 5*13 and 13-5 = 2^3;
100^2+1 = 10001 = 73*137 and 137-73 = 2^6;
3524^2+1 = 12418577 = 3049*4073 and 4073-3049 = 2^10.
MAPLE
with(numtheory):for a from 1 to 200000 do:p:=ithprime(a):for i from 1 to 50 do:q:=p+2^i:if type(q, prime)=true then x:=sqrt(p*q-1):if x=floor(x) then print(x):else fi:fi:od:od:
MATHEMATICA
Select[Range[10^6], !PrimeQ[#^2+1]&&Plus@@Last/@FactorInteger[#^2+1]==2&&PrimeNu[#^2+1]==2&&IntegerQ[Log[2, FactorInteger[#^2+1][[2]][[1]]-FactorInteger[#^2+1][[1]][[1]]]]&
PROG
(PARI) isok(n) = (bigomega(n^2+1) == 2) && (f = factor(n^2+1)) && ((f[2, 1] - f[1, 1])== 2^(valuation(f[2, 1] - f[1, 1], 2))); \\ Michel Marcus, Mar 07 2014
CROSSREFS
Subsequence of A085722.
Sequence in context: A060570 A215875 A317598 * A291536 A229452 A199816
KEYWORD
nonn,hard
AUTHOR
Michel Lagneau, Mar 07 2014
EXTENSIONS
a(7)-a(20) from Giovanni Resta, Mar 07 2014
STATUS
approved