The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238952 The size (the number of arcs) in the transitive closure of divisor lattice D(n). 4
 0, 1, 1, 3, 1, 5, 1, 6, 3, 5, 1, 12, 1, 5, 5, 10, 1, 12, 1, 12, 5, 5, 1, 22, 3, 5, 6, 12, 1, 19, 1, 15, 5, 5, 5, 27, 1, 5, 5, 22, 1, 19, 1, 12, 12, 5, 1, 35, 3, 12, 5, 12, 1, 22, 5, 22, 5, 5, 1, 42, 1, 5, 12, 21, 5, 19, 1, 12, 5, 19, 1, 48, 1, 5, 12, 12, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS a(n) is the number of ordered factorizations of n = r*s*t such that t is not equal to 1. For example: a(4)=3 because we have: 1*1*4, 1*2*2, and 2*1*2. Cf. A007425. - Geoffrey Critzer, Jan 01 2015 Number of pairs (d1, d2) of divisors of n such that d1<=d2, d1|n, d2|n, d1|d2 and d1 + d2 <= n. For example, a(8) has 6 divisor pairs (1,1), (1,2), (1,4), (2,2), (2,4) and (4,4). - Wesley Ivan Hurt, May 01 2021 LINKS Antti Karttunen, Table of n, a(n) for n = 1..65537 S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arXiv:1405.5283 [math.NT], 2014 (see 13th line in Table 1). FORMULA Conjecture: a(n) = Sum_{i=1..floor(n/2)} d(i) * (floor(n/i) - floor((n-1)/i), where d(n) is the number of divisors of n. - Wesley Ivan Hurt, Dec 21 2017 a(n) = Sum_{d|n, d=1} (d(k) - 1)*x^k/(1 - x^k), where d(k) = number of divisors of k (A000005). - Ilya Gutkovskiy, Sep 11 2018 MATHEMATICA Table[Map[DivisorSigma[0, #] &, Drop[Divisors[n], -1]] // Total, {n, 1, 77}] (* Geoffrey Critzer, Jan 01 2015 *) PROG (PARI) A238952(n) = sumdiv(n, d, (d

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 15:04 EDT 2022. Contains 354115 sequences. (Running on oeis4.)