OFFSET
1,4
COMMENTS
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
Additive with a(p^e) = A000005(e).
Sum_{k=1..n} a(n) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) = 0.51780076119050171903..., where f(x) = -x + (1-x) * Sum_{k>=1} x^k/(1-x^k). - Amiram Eldar, Sep 29 2023
EXAMPLE
8 has 3 (1+e)-divisors, 1, 2 and 8. Two of these divisors, 2 and 8 = 2^3 are prime powers. Therefore, a(8) = 2.
MATHEMATICA
f[p_, e_] := DivisorSigma[0, e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) A349281(n) = vecsum(apply(e->numdiv(e), factor(n)[, 2])); \\ Antti Karttunen, Nov 13 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Nov 13 2021
STATUS
approved