The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317613 Permutation of the nonnegative integers: lodumo_4 of A047247. 1
 2, 3, 0, 1, 4, 5, 6, 7, 10, 11, 8, 9, 12, 13, 14, 15, 18, 19, 16, 17, 20, 21, 22, 23, 26, 27, 24, 25, 28, 29, 30, 31, 34, 35, 32, 33, 36, 37, 38, 39, 42, 43, 40, 41, 44, 45, 46, 47, 50, 51, 48, 49, 52, 53, 54, 55, 58, 59, 56, 57, 60, 61, 62, 63, 66, 67, 64 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Write n in base 8, then apply the following substitution to the rightmost digit: '0'->'2, '1'->'3', and vice versa. Convert back to decimal. A self-inverse permutation: a(a(n)) = n. Array whose columns are, in this order, A047463, A047621, A047451 and A047522, read by rows. LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 OEIS wiki, Lodumo transform Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-2,2,-2,2,-1) FORMULA a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - 2*a(n-6) + 2*a(n-7) - a(n-8), n > 7. a(n) = (4*(floor(((2*n + 4) mod 8)/4) - floor(((n + 2) mod 8)/4)) + 2*n)/2. a(n) = lod_4(A047247(n+1)). a(4*n) = A047463(n+1). a(4*n+1) = A047621(n+1). a(4*n+2) = A047451(n+1). a(4*n+3) = A047522(n+1). a(A042948(n)) = A047596(n+1). a(A042964(n+1)) = A047551(n+1). G.f.: (x^7 + x^5 + 3*x^3 - 2*x^2 - x + 2)/(x^8 - 2*x^7 + 2*x^6 - 2*x^5 + 2*x^4 - 2*x^3 + 2*x^2 - 2*x + 1). E.g.f.: x*exp(x) + cos(x) + sin(x) + cos(x/sqrt(2))*cosh(x/sqrt(2)) + (sqrt(2)*cos(x/sqrt(2)) - sin(x/sqrt(2)))*sinh(x/sqrt(2)). EXAMPLE a(25) = a('3'1') = '3'3' = 27. a(26) = a('3'2') = '3'0' = 24. a(27) = a('3'3') = '3'1' = 25. a(28) = a('3'4') = '3'4' = 28. a(29) = a('3'5') = '3'5' = 29. The sequence as array read by rows:   A047463, A047621, A047451, A047522;         2,       3,       0,       1;         4,       5,       6,       7;        10,      11,       8,       9;        12,      13,      14,      15;        18,      19,      16,      17;        20,      21,      22,      23;        26,      27,      24,      25;        28,      29,      30,      31;   ... MATHEMATICA Table[(4*(Floor[1/4 Mod[2*n + 4, 8]] - Floor[1/4 Mod[n + 2, 8]]) + 2*n)/2, {n, 0, 100}] f[n_] := Block[{id = IntegerDigits[n, 8]}, FromDigits[ Join[Most@ id /. {{} -> {0}}, {id[[-1]] /. {0 -> 2, 1 -> 3, 2 -> 0, 3 -> 1}}], 8]]; Array[f, 67, 0] (* or *) CoefficientList[ Series[(x^7 + x^5 + 3x^3 - 2x^2 - x + 2)/((x - 1)^2 (x^6 + x^4 + x^2 + 1)), {x, 0, 70}], x] (* or *) LinearRecurrence[{2, -2, 2, -2, 2, -2, 2, -1}, {2, 3, 0, 1, 4, 5, 6, 7}, 70] (* Robert G. Wilson v, Aug 01 2018 *) PROG (Maxima) makelist((4*(floor(mod(2*n + 4, 8)/4) - floor(mod(n + 2, 8)/4)) + 2*n)/2, n, 0, 100); (PARI) x='x+O('x^100); Vec((x^7+x^5+3*x^3-2*x^2-x+2)/((1-x)^2*(x^6+x^4+ x^2+1))) \\ G. C. Greubel, Sep 25 2018 (MAGMA) m:=100; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((x^7+x^5+3*x^3-2*x^2-x+2)/((1-x)^2*(x^6+x^4+ x^2+1)))); // G. C. Greubel, Sep 25 2018 CROSSREFS Cf. A047225, A047243, A047257, A064429, A080412, A159959, A026185. Sequence in context: A163575 A275736 A276074 * A292628 A163465 A263230 Adjacent sequences:  A317610 A317611 A317612 * A317614 A317615 A317616 KEYWORD nonn,easy,base AUTHOR Franck Maminirina Ramaharo, Aug 01 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 11:25 EST 2021. Contains 349429 sequences. (Running on oeis4.)