login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A064429
a(n) = floor(n / 3) * 3 + sign(n mod 3) * (3 - n mod 3).
10
0, 2, 1, 3, 5, 4, 6, 8, 7, 9, 11, 10, 12, 14, 13, 15, 17, 16, 18, 20, 19, 21, 23, 22, 24, 26, 25, 27, 29, 28, 30, 32, 31, 33, 35, 34, 36, 38, 37, 39, 41, 40, 42, 44, 43, 45, 47, 46, 48, 50, 49, 51, 53, 52, 54, 56, 55, 57, 59, 58, 60, 62, 61, 63, 65, 64, 66, 68, 67, 69, 71, 70
OFFSET
0,2
COMMENTS
a(a(n)) = n (a self-inverse permutation).
Take natural numbers, exchange trisections starting with 1 and 2.
Lodumo_3 of A080425. - Philippe Deléham, Apr 26 2009
From Franck Maminirina Ramaharo, Jul 27 2018: (Start)
The sequence is A008585 interleaved with A016789 and A016777.
a(n) is also obtained as follows: write n in base 3; if the rightmost digit is '1', then replace it with '2' and vice versa; convert back to decimal. For example a(14) = a('11'2') = '11'1' = 13 and a(10) = a('10'1') = '10'2' = 11. (End)
A permutation of the nonnegative integers partitioned into triples [3*k-3, 3*k-1, 3*k-2] for k > 0. - Guenther Schrack, Feb 05 2020
FORMULA
a(n) = A080782(n+1) - 1.
a(n) = n - 2*sin(4*Pi*n/3)/sqrt(3). - Jaume Oliver Lafont, Dec 05 2008
a(n) = A001477(n) + A102283(n). - Jaume Oliver Lafont, Dec 05 2008
a(n) = lod_3(A080425(n)). - Philippe Deléham, Apr 26 2009
G.f.: x*(2 - x + 2*x^2)/((1 + x + x^2)*(1 - x)^2 ). - R. J. Mathar, Feb 20 2011
a(n) = 2*n - 3 - 3*floor((n-2)/3). - Wesley Ivan Hurt, Nov 30 2013
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 3. - Wesley Ivan Hurt, Oct 06 2017
E.g.f.: x*exp(x) + (2*sin((sqrt(3)*x)/2))/(exp(x/2)*sqrt(3)). - Franck Maminirina Ramaharo, Jul 27 2018
From Guenther Schrack, Feb 05 2020: (Start)
a(n) = a(n-3) + 3 with a(0)=0, a(1)=2, a(2)=1 for n > 2;
a(n) = n + (w^(2*n) - w^n)*(1 + 2*w)/3 where w = (-1 + sqrt(-3))/2. (End)
Sum_{n>=1} (-1)^n/a(n) = log(2)/3. - Amiram Eldar, Jan 31 2023
EXAMPLE
From Franck Maminirina Ramaharo, Jul 27 2018: (Start)
Interleave 3 sequences:
A008585: 0.....3.....6.....9.......12.......15........
A016789: ..2.....5.....8.....11.......14.......17.....
A016777: ....1.....4.....7......10.......13.......16..
(End)
MAPLE
A064429:=n->2*n-3-3*floor((n-2)/3): seq(A064429(n), n=0..100); # Wesley Ivan Hurt, Nov 30 2013
MATHEMATICA
Table[2 n - 3 - 3 Floor[(n - 2)/3], {n, 0, 100}] (* Wesley Ivan Hurt, Nov 30 2013 *)
{#+1, #-1, #}[[Mod[#, 3, 1]]]&/@Range[0, 100] (* Federico Provvedi, May 11 2021 *)
PROG
(PARI) a(n) = 2*n-3-3*((n-2)\3); \\ Altug Alkan, Oct 06 2017
(GAP) a:=[0, 2, 1, 3];; for n in [5..100] do a[n]:=a[n-1]+a[n-3]-a[n-4]; od; a; # Muniru A Asiru, Jul 27 2018
(Magma) [2*n - 3 - 3*((n-2) div 3): n in [0..80]]; // Vincenzo Librandi, Aug 05 2018
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Oct 15 2001
STATUS
approved