OFFSET
1,2
COMMENTS
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 1..10000
FORMULA
A permutation of the natural numbers: 3*k - 2 interleaved with 3*k - 1 and 3*k; k=1,2,3,...; given a(1) = 1. a(n) = n if the subset = 3*k - 1: (2, 5, 8, ...); a(n) = n+1 in 3*k - 2, k>1: (4, 7, 10, ...); and a(n) = (n-1) in 3*k: (3, 6, 9, ...).
G.f.: x(1+x+2x^2-2x^3+x^4)/((1-x)^2(1+x+x^2)). - R. J. Mathar, Sep 06 2008
a(n) = if(n==1, 1, (n-1) + (n-1) mod 3). - Zak Seidov, Feb 23 2017
For n>1, a(n) = n+2*sin(2*(n+1)*Pi/3)/sqrt(3). - Wesley Ivan Hurt, Sep 27 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 2 - 2*Pi/(3*sqrt(3)) - log(2)/3. - Amiram Eldar, Aug 21 2023
EXAMPLE
Interleave 3 subsets:
1,....4,.......7,......10,......13,......16,...
...2,.......5,.......8,......11,......14,...
.........3,.......6,.......9,......12,...
...
MAPLE
A143097 := proc(n) if(n<=1)then return n: elif(n mod 3 <= 1)then return n+1-2*(n mod 3): else return n: fi: end: seq(A143097(n), n=1..70); # Nathaniel Johnston, Apr 30 2011
MATHEMATICA
With[{nn=70}, Join[{1}, Riffle[Rest[Select[Range[nn], !Divisible[#, 3]&]], Range[ 3, nn, 3], 3]]] (* Harvey P. Dale, May 06 2012 *)
Table[If[k == 1, 1, k - 1 + Mod[k - 1, 3]], {k, 100}] (* Zak Seidov, Feb 23 2017 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Gary W. Adamson, Jul 24 2008
STATUS
approved