OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,2).
FORMULA
Inverse binomial transform of A048655: (1, 5, 11, 27, 65, 157, ...).
a(n) = A135530(n+1). - R. J. Mathar, Aug 02 2008
From Klaus Brockhaus, Jul 27 2009: (Start)
a(n) = (5 - 3*(-1)^n) * 2^((2*n-1+(-1)^n)/4)/2.
a(n) = 2*a(n-2) for n > 1; a(0) = 1, a(1) = 4.
G.f.: (1+4*x)/(1-2*x^2). (End)
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
MAPLE
seq(coeff(series((1+4*x)/(1-2*x^2), x, n+1), x, n), n = 0..45); # G. C. Greubel, Mar 13 2020
MATHEMATICA
nn=30; With[{p=2^Range[0, nn]}, Riffle[Take[p, nn-2], Drop[p, 2]]] (* Harvey P. Dale, Oct 03 2011 *)
PROG
(PARI) for(n=0, 41, print1((5-3*(-1)^n)*2^(1/4*(2*n-1+(-1)^n))/2, ", ")) \\ Klaus Brockhaus, Jul 27 2009
(Maxima) A143095(n):=(5-3*(-1)^n)*2^(1/4*(2*n-1+(-1)^n))/2$
makelist(A143095(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */
(Sage) [(5 -3*(-1)^n)*2^((2*n-1+(-1)^n)/4)/2 for n in (0..45)] # G. C. Greubel, Mar 13 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson & Roger L. Bagula, Jul 23 2008
EXTENSIONS
More terms from Klaus Brockhaus, Jul 27 2009
STATUS
approved