The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A141073 List of central integer pairs in Pascal-like triangles with index of asymmetry y = 3 and index of obliqueness z = 0 or z = 1. 9
 1, 1, 4, 2, 8, 4, 17, 8, 35, 17, 72, 35, 149, 72, 308, 149, 636, 308, 1314, 636, 2715, 1314, 5609, 2715, 11588, 5609, 23941, 11588, 49462, 23941, 102188, 49462, 211120, 102188, 436173, 211120, 901131, 436173, 1861732, 901131, 3846329, 1861732, 7946496, 3846329 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS For the Pascal-like triangle G(n, k) with index of asymmetry y = 3 and index of obliqueness z = 0, which is read by rows, we have G(n, 0) = G(n+1, n+1) = 1, G(n+2, n+1) = 2, G(n+3, n+1) = 4, G(n+4, n+1) = 8, and G(n+5, k) = G(n+1, k-1) + G(n+1, k) + G(n+2, k) + G(n+3, k) + G(n+4, k) for n >= 0 and k = 1..(n+1). (This is array A140996.) For the Pascal-like triangle G(n, k) with index of asymmetry y = 3 and index of obliqueness z = 1, which is read by rows, we have G(n, n) = G(n+1, 0) = 1, G(n+2, 1) = 2, G(n+3, 2) = 4, G(n+4, 3) = 8, and G(n+5, k) = G(n+1, k-3) + G(n+1, k-4) + G(n+2, k-3) + G(n+3, k-2) + G(n+4, k-1) for n > = 0 and k = 4..(n+4). (This is array A140995.) Arrays A140995 and A140996 are mirror images of each other. For discussion about their properties and their connection to Stepan's triangles, see their documentation. See also the documentation of the sequences in the CROSSREFS. - Petros Hadjicostas, Jun 13 2019 LINKS Juri-Stepan Gerasimov, Stepan's triangles and Pascal's triangle are connected by the recurrence relation ... FORMULA From Petros Hadjicostas, Jun 13 2019: (Start) a(2*n - 1) = A140996(2*n - 1, n - 1) = A140995(2*n - 1, n) and a(2*n) = A140996(2*n - 1, n) = A140995(2*n - 1, n - 1) for n >= 1. a(2*n) = a(2*n - 3) for n >= 3. a(n) = 2*a(n-2) + A129847(floor(n/2) - (4 + (-1)^n)) for n >= 9. G.f.: x*(x^8 + 3*x^6 + x^5 + 3*x^4 + x^3 + 3*x^2 + x + 1)/(1 - x^2 - x^4 - 2*x^6 -x^8). (End) EXAMPLE Pascal-like triangle with y = 3 and z = 0 (i.e., A140996) begins as follows:   1, so no central pair.   1 1, so a(1) = 1 and a(2) = 1.   1 2 1, so no central pair.   1 4 2 1, so a(3) = 4 and a(4) = 2.   1 8 4 2 1, so no central pair.   1 16 8 4 2 1, so a(5) = 8 and a(6) = 4.   1 31 17 8 4 2 1, so no central pair.   1 60 35 17 8 4 2 1, so a(7) = 17 and a(8) = 8.   1 116 72 35 17 8 4 2 1, so no central pair.   1 224 148 72 35 17 8 4 2 1, so a(9) = 35 and a(10) = 17.   1 432 303 149 72 35 17 8 4 2 1, so no central pair.   1 833 618 308 149 72 35 17 8 4 2 1, so a(11) = 72 and a(12) = 35. ... [edited by Petros Hadjicostas, Jun 13 2019] CROSSREFS Cf. A129847, A140993, A140994, A140995, A140996, A140997, A140998, A141065, A141066, A141067, A141068, A141069, A141070, A141072. Sequence in context: A083703 A066104 A143095 * A261830 A194038 A131819 Adjacent sequences:  A141070 A141071 A141072 * A141074 A141075 A141076 KEYWORD nonn AUTHOR Juri-Stepan Gerasimov, Jul 16 2008 EXTENSIONS Partially edited by N. J. A. Sloane, Jul 18 2008 More terms from Petros Hadjicostas, Jun 13 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 07:19 EDT 2022. Contains 356959 sequences. (Running on oeis4.)