login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317531
Expansion of Sum_{p prime, k>=1} x^(p^k)/(1 + x^(p^k)).
2
0, 1, 1, 0, 1, 0, 1, -1, 2, 0, 1, -1, 1, 0, 2, -2, 1, -1, 1, -1, 2, 0, 1, -2, 2, 0, 3, -1, 1, -1, 1, -3, 2, 0, 2, -2, 1, 0, 2, -2, 1, -1, 1, -1, 3, 0, 1, -3, 2, -1, 2, -1, 1, -2, 2, -2, 2, 0, 1, -2, 1, 0, 3, -4, 2, -1, 1, -1, 2, -1, 1, -3, 1, 0, 3, -1, 2, -1, 1, -3, 4, 0, 1, -2, 2, 0, 2, -2, 1, -2, 2, -1, 2, 0, 2
OFFSET
1,9
LINKS
FORMULA
G.f.: Sum_{k>=1} x^A246655(k)/(1 + x^A246655(k)).
L.g.f.: log(Product_{p prime, k>=1} (1 + x^(p^k))^(1/p^k)) = Sum_{n>=1} a(n)*x^n/n.
a(n) = Sum_{d|n} (-1)^(n/d+1)*A069513(d).
If n is odd, a(n) = A001222(n).
MATHEMATICA
nmax = 95; Rest[CoefficientList[Series[Sum[Boole[PrimePowerQ[k]] x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
nmax = 95; Rest[CoefficientList[Series[Log[Product[(1 + Boole[PrimePowerQ[k]] x^k)^(1/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
Table[DivisorSum[n, (-1)^(n/# + 1) &, PrimePowerQ[#] &], {n, 95}]
PROG
(PARI) A317531(n) = sumdiv(n, d, ((-1)^(n/d+1))*(1==omega(d))); \\ Antti Karttunen, Sep 30 2018
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jul 30 2018
STATUS
approved