|
|
A317529
|
|
Expansion of Sum_{k>=1} x^(k^2)/(1 + x^(k^2)).
|
|
4
|
|
|
1, -1, 1, 0, 1, -1, 1, -2, 2, -1, 1, 0, 1, -1, 1, -1, 1, -2, 1, 0, 1, -1, 1, -2, 2, -1, 2, 0, 1, -1, 1, -3, 1, -1, 1, 0, 1, -1, 1, -2, 1, -1, 1, 0, 2, -1, 1, -1, 2, -2, 1, 0, 1, -2, 1, -2, 1, -1, 1, 0, 1, -1, 2, -2, 1, -1, 1, 0, 1, -1, 1, -4, 1, -1, 2, 0, 1, -1, 1, -1, 3, -1, 1, 0, 1, -1, 1, -2, 1, -2, 1, 0, 1, -1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,8
|
|
LINKS
|
|
|
FORMULA
|
L.g.f.: log(Product_{k>=1} (1 + x^(k^2))^(1/k^2)) = Sum_{n>=1} a(n)*x^n/n.
a(n) = Sum_{d|n} (-1)^(n/d+1)*A010052(d).
Multiplicative with a(2^e) = -floor(e/2+1) for odd e, -floor((e-1)/2) for even e, and a(p^e) = floor(e/2+1) for an odd prime p. - Amiram Eldar, Oct 25 2020
|
|
MAPLE
|
seq(coeff(series(add(x^(k^2)/(1+x^(k^2)), k=1..n), x, n+1), x, n), n=1..100); # Muniru A Asiru, Jul 30 2018
|
|
MATHEMATICA
|
nmax = 95; Rest[CoefficientList[Series[Sum[x^k^2/(1 + x^k^2), {k, 1, nmax}], {x, 0, nmax}], x]]
nmax = 95; Rest[CoefficientList[Series[Log[Product[(1 + x^k^2)^(1/k^2), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
Table[DivisorSum[n, (-1)^(n/# + 1) &, IntegerQ[#^(1/2)] &], {n, 95}]
f[p_, e_] := If[p == 2, If[OddQ[e], -Floor[e/2 + 1], -Floor[(e - 1)/2]], Floor[e/2 + 1]]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,mult,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|