login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300853
L.g.f.: log(Product_{k>=1} (1 + x^(k^2))) = Sum_{n>=1} a(n)*x^n/n.
5
1, -1, 1, 3, 1, -1, 1, -5, 10, -1, 1, 3, 1, -1, 1, 11, 1, -10, 1, 3, 1, -1, 1, -5, 26, -1, 10, 3, 1, -1, 1, -21, 1, -1, 1, 30, 1, -1, 1, -5, 1, -1, 1, 3, 10, -1, 1, 11, 50, -26, 1, 3, 1, -10, 1, -5, 1, -1, 1, 3, 1, -1, 10, 43, 1, -1, 1, 3, 1, -1, 1, -50, 1, -1, 26, 3, 1, -1, 1, 11, 91, -1, 1, 3, 1
OFFSET
1,4
LINKS
FORMULA
G.f.: Sum_{k>=1} k^2*x^(k^2)/(1 + x^(k^2)).
a(n) = 1 if n is an odd squarefree (A056911).
a(n) = -1 if n is an even squarefree (A039956).
a(n) = Sum_{d^2|n} (-1)^(n/d^2 + 1) * d^2. - Andrew Howroyd, Jul 20 2018
Multiplicative with a(2^e) = (1 - (-2)^(e + 1))/3, and a(p^e) = (p^(2*floor(e/2 + 1)) - 1)/(p^2 - 1) for an odd prime p. - Amiram Eldar, Oct 25 2020
From Amiram Eldar, Dec 18 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * (1 - 1/2^(s-1)).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = (1 - 1/sqrt(2)) * zeta(3/2)/3 = A268682 * A078434 / 3 = 0.255049... . (End)
EXAMPLE
L.g.f.: L(x) = x - x^2/2 + x^3/3 + 3*x^4/4 + x^5/5 - x^6/6 + x^7/7 - 5*x^8/8 + 10*x^9/9 - x^10/10 + ...
exp(L(x)) = 1 + x + x^4 + x^5 + x^9 + x^10 + x^13 + x^14 + ... + A033461(n)*x^n + ...
MATHEMATICA
nmax = 85; Rest[CoefficientList[Series[Log[Product[(1 + x^k^2), {k, 1, Floor[nmax^(1/2) + 1]}]], {x, 0, nmax}], x] Range[0, nmax]]
nmax = 85; Rest[CoefficientList[Series[Sum[k^2 x^k^2/(1 + x^k^2), {k, 1, Floor[nmax^(1/2) + 1]}], {x, 0, nmax}], x]]
Table[DivisorSum[n, (-1)^(n/# + 1) # &, IntegerQ[#^(1/2)] &], {n, 85}]
f[p_, e_] := If[p == 2, (1 - (-2)^(e + 1))/3, (p^(2*Floor[e/2 + 1]) - 1)/(p^2 - 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
PROG
(PARI) seq(n)={Vec(deriv(log(prod(k=1, n, (1 + x^(k^2) + O(x*x^n))))))} \\ Andrew Howroyd, Jul 20 2018
(PARI) a(n)={sumdiv(n, d, if(n%d^2, 0, (-1)^(n/d^2 + 1) * d^2))} \\ Andrew Howroyd, Jul 20 2018
KEYWORD
sign,mult,easy
AUTHOR
Ilya Gutkovskiy, Mar 13 2018
EXTENSIONS
Keyword:mult added by Andrew Howroyd, Jul 20 2018
STATUS
approved