login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300851
Number of 6-cycles in the n-transposition graph.
3
0, 0, 6, 2880, 83400, 1742400, 32810400, 600606720, 11049696000, 207712512000, 4024212192000, 80721349632000, 1680305519692800, 36334168206336000, 816328800967680000, 19051455560417280000, 461604030434426880000, 11603252352344260608000
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Graph Cycle
Eric Weisstein's World of Mathematics, Transposition Graph
FORMULA
a(n) = n!*(binomial(n,3) + 116*binomial(n,4) + 105*binomial(n,5) + 30*binomial(n,6)). - Andrew Howroyd, Mar 13 2018
a(n) = n!*binomial(n, 3)*(n^3 + 9*n^2 + 16*n - 152)/4.
E.g.f.: x^3*(1+113*x-124*x^2+40*x^3)/(1-x)^7. - Robert Israel, Mar 14 2018
MAPLE
seq(n!*binomial(n, 3)*(n^3 + 9*n^2 + 16*n - 152)/4, n=1..30); # Robert Israel, Mar 14 2018
MATHEMATICA
Table[n! Binomial[n, 3] (n^3 + 9 n^2 + 16 n - 152)/4, {n, 20}]
PROG
(PARI) a(n) = n!*(binomial(n, 3) + 116*binomial(n, 4) + 105*binomial(n, 5) + 30*binomial(n, 6)); \\ Andrew Howroyd, Mar 13 2018
(PARI) x='x+O('x^99); concat([0, 0], Vec(serlaplace(x^3*(1+113*x-124*x^2+40*x^3)/(1-x)^7))) \\ Altug Alkan, Mar 14 2018
CROSSREFS
Cf. A300843 (4-cycles).
Sequence in context: A198667 A225066 A001326 * A089501 A290149 A187083
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Mar 13 2018
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, Mar 13 2018
STATUS
approved