login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 6-cycles in the n-transposition graph.
3

%I #20 Mar 14 2018 03:54:45

%S 0,0,6,2880,83400,1742400,32810400,600606720,11049696000,207712512000,

%T 4024212192000,80721349632000,1680305519692800,36334168206336000,

%U 816328800967680000,19051455560417280000,461604030434426880000,11603252352344260608000

%N Number of 6-cycles in the n-transposition graph.

%H Robert Israel, <a href="/A300851/b300851.txt">Table of n, a(n) for n = 1..444</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GraphCycle.html">Graph Cycle</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TranspositionGraph.html">Transposition Graph</a>

%F a(n) = n!*(binomial(n,3) + 116*binomial(n,4) + 105*binomial(n,5) + 30*binomial(n,6)). - _Andrew Howroyd_, Mar 13 2018

%F a(n) = n!*binomial(n, 3)*(n^3 + 9*n^2 + 16*n - 152)/4.

%F E.g.f.: x^3*(1+113*x-124*x^2+40*x^3)/(1-x)^7. - _Robert Israel_, Mar 14 2018

%p seq(n!*binomial(n, 3)*(n^3 + 9*n^2 + 16*n - 152)/4,n=1..30); # _Robert Israel_, Mar 14 2018

%t Table[n! Binomial[n, 3] (n^3 + 9 n^2 + 16 n - 152)/4, {n, 20}]

%o (PARI) a(n) = n!*(binomial(n,3) + 116*binomial(n,4) + 105*binomial(n,5) + 30*binomial(n,6)); \\ _Andrew Howroyd_, Mar 13 2018

%o (PARI) x='x+O('x^99); concat([0,0], Vec(serlaplace(x^3*(1+113*x-124*x^2+40*x^3)/(1-x)^7))) \\ _Altug Alkan_, Mar 14 2018

%Y Cf. A300843 (4-cycles).

%K nonn

%O 1,3

%A _Eric W. Weisstein_, Mar 13 2018

%E Terms a(9) and beyond from _Andrew Howroyd_, Mar 13 2018