OFFSET
1,2
COMMENTS
Terms satisfy an order-42 linear recurrence (with large coefficients). - Eric W. Weisstein, Mar 20 2018
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..100
Eric Weisstein's World of Mathematics, Graph Cycle
Eric Weisstein's World of Mathematics, Keller Graph
FORMULA
a(n) = 2^(-1 + 2*n)*((1323*(5*3^(1 + 2*n) + 5*3^(1 + 3*n) - 5*3^(1 + n)*4^n + 5*3^n*4^(1 + 2*n) - 5*6^(1 + 2*n) - 5*7^n + 5*2^(1 + 4*n)*9^n + 5*16^n - 5*21^n - 5*2^(1 + 2*n)*27^n + 5*28^n - 61^n - 5*64^n + 5*81^n - 5*192^n + 256^n) + 5*n*(-9*7^n*(225 + 140*3^n + 216*n) + 49*(4*27^(1 + n) + 3^(3 + 2*n)*(7 - 3*2^(1 + 2*n) + 6*n) + 27*(-1 - 64^n - 3*n + 3*n^2 + n^3 + 2^(1 + 4*n)*(2 + n) - 2^(1 + 2*n)*n*(3 + n)) + 3^n*(67 + 27*4^(1 + 2*n) + 129*n + 92*n^2 - 27*2^(1 + 2*n)*(5 + 3*n)))))/6615). - Eric W. Weisstein, Mar 20 2018
PROG
(PARI) \\ needs G function from A300818
seq(n)={my(q2=G(n, 2, [0..3]), q3=G(n, 3, [0..15]), q5=G(n, 5, [0..255]));
vector(n, n, (q5[n] + 3*q3[n]*(1-4*q2[n]/4^n)))} \\ Andrew Howroyd, Mar 14 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Mar 13 2018
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, Mar 14 2018
STATUS
approved