login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300848
Number of 5-cycles in the n-Keller graph.
4
0, 192, 3932352, 14196341760, 27956664625152, 42824416956923904, 57511921349407752192, 71286632288209906434048, 83776042661497348461428736, 94866764955475116656494116864, 104613452872280139876815553429504, 113161952423983070455749407812878336
OFFSET
1,2
COMMENTS
Terms satisfy an order-42 linear recurrence (with large coefficients). - Eric W. Weisstein, Mar 20 2018
LINKS
Eric Weisstein's World of Mathematics, Graph Cycle
Eric Weisstein's World of Mathematics, Keller Graph
FORMULA
a(n) = 2^(-1 + 2*n)*((1323*(5*3^(1 + 2*n) + 5*3^(1 + 3*n) - 5*3^(1 + n)*4^n + 5*3^n*4^(1 + 2*n) - 5*6^(1 + 2*n) - 5*7^n + 5*2^(1 + 4*n)*9^n + 5*16^n - 5*21^n - 5*2^(1 + 2*n)*27^n + 5*28^n - 61^n - 5*64^n + 5*81^n - 5*192^n + 256^n) + 5*n*(-9*7^n*(225 + 140*3^n + 216*n) + 49*(4*27^(1 + n) + 3^(3 + 2*n)*(7 - 3*2^(1 + 2*n) + 6*n) + 27*(-1 - 64^n - 3*n + 3*n^2 + n^3 + 2^(1 + 4*n)*(2 + n) - 2^(1 + 2*n)*n*(3 + n)) + 3^n*(67 + 27*4^(1 + 2*n) + 129*n + 92*n^2 - 27*2^(1 + 2*n)*(5 + 3*n)))))/6615). - Eric W. Weisstein, Mar 20 2018
PROG
(PARI) \\ needs G function from A300818
seq(n)={my(q2=G(n, 2, [0..3]), q3=G(n, 3, [0..15]), q5=G(n, 5, [0..255]));
vector(n, n, (q5[n] + 3*q3[n]*(1-4*q2[n]/4^n)))} \\ Andrew Howroyd, Mar 14 2018
CROSSREFS
Cf. A300818 (3-cycles), A300842 (4-cycles), A300849 (6-cycles).
Sequence in context: A008698 A282541 A202930 * A340352 A012856 A114859
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Mar 13 2018
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, Mar 14 2018
STATUS
approved