login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317528 Expansion of Sum_{k>=1} mu(k)^2*x^k/(1 + x^k), where mu() is the Moebius function (A008683). 2
1, 0, 2, -2, 2, 0, 2, -2, 2, 0, 2, -4, 2, 0, 4, -2, 2, 0, 2, -4, 4, 0, 2, -4, 2, 0, 2, -4, 2, 0, 2, -2, 4, 0, 4, -4, 2, 0, 4, -4, 2, 0, 2, -4, 4, 0, 2, -4, 2, 0, 4, -4, 2, 0, 4, -4, 4, 0, 2, -8, 2, 0, 4, -2, 4, 0, 2, -4, 4, 0, 2, -4, 2, 0, 4, -4, 4, 0, 2, -4, 2, 0, 2, -8, 4, 0, 4, -4, 2, 0, 4, -4, 4, 0, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
FORMULA
G.f.: Sum_{k>=1} x^A005117(k)/(1 + x^A005117(k)).
L.g.f.: log(Product_{k>=1} (1 + mu(k)^2*x^k)^(1/k)) = Sum_{n>=1} a(n)*x^n/n.
a(n) = Sum_{d|n} (-1)^(n/d+1)*A008966(d).
If n is odd, a(n) = A034444(n).
Multiplicative with a(2) = 0, a(2^e) = -2 for e>1, and a(p^e) = 2 for p>2 and e>=1. - Amiram Eldar, Nov 19 2022
MAPLE
with(numtheory): seq(coeff(series(add(mobius(k)^2*x^k/(1+x^k), k=1..n), x, n+1), x, n), n=1..120); # Muniru A Asiru, Jul 30 2018
MATHEMATICA
nmax = 95; Rest[CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
nmax = 95; Rest[CoefficientList[Series[Log[Product[(1 + MoebiusMu[k]^2 x^k)^(1/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
Table[DivisorSum[n, (-1)^(n/# + 1) &, SquareFreeQ[#] &], {n, 95}]
f[p_, e_] := 2; f[2, e_] := If[e == 1, 0, -2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 19 2022 *)
PROG
(PARI) A317528(n) = sumdiv(n, d, ((-1)^(1+d))*issquarefree(n/d)); \\ Antti Karttunen, Dec 05 2021
CROSSREFS
Sequence in context: A346149 A215883 A277024 * A246793 A335185 A319243
KEYWORD
sign,mult
AUTHOR
Ilya Gutkovskiy, Jul 30 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 02:53 EST 2023. Contains 367567 sequences. (Running on oeis4.)