login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100007
Number of unitary divisors of 2n-1 (d such that d divides 2n-1, GCD(d,(2n-1)/d)=1). Bisection of A034444.
2
1, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 2, 2, 2, 2, 4, 4, 2, 4, 2, 2, 4, 2, 2, 4, 2, 4, 4, 2, 2, 4, 4, 2, 4, 2, 2, 4, 4, 2, 2, 2, 4, 4, 2, 4, 4, 4, 2, 4, 2, 2, 8, 2, 2, 4, 2, 4, 4, 4, 2, 4, 2, 2, 4, 2, 4, 4, 2, 2, 4, 4, 4, 4, 2, 2, 4, 4, 2, 4, 4, 2, 8, 2, 2, 4, 2, 4, 4, 2, 2, 4, 4, 4, 4, 2, 2, 8, 2, 2, 4, 4, 4, 4, 4
OFFSET
1,2
FORMULA
From Ilya Gutkovskiy, Apr 28 2017: (Start)
a(n) = [x^(2*n-1)] Sum_{k>=1} mu(k)^2*x^k/(1 - x^k).
a(n) = 2^omega(2*n-1). (End)
From Amiram Eldar, Jan 28 2023: (Start)
a(n) = A034444(2*n-1) = A068068(2*n-1).
Sum_{k=1..n} a(k) ~ 4*n*((log(n) + 2*gamma - 1 + 7*log(2)/3 - 2*zeta'(2)/zeta(2)) / Pi^2, where gamma is Euler's constant (A001620). (End)
EXAMPLE
a(13)=2 because among the three divisors of 25 only 1 and 25 are unitary.
MAPLE
with(numtheory): for n from 1 to 120 do printf(`%d, `, 2^nops(ifactors(2*n-1)[2])) od: # Emeric Deutsch, Dec 24 2004
MATHEMATICA
a[n_] := 2^PrimeNu[2*n-1]; Array[a, 100] (* Amiram Eldar, Jan 28 2023 *)
PROG
(PARI) a(n) = 2^omega(2*n-1); \\ Amiram Eldar, Jan 28 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 20 2004
EXTENSIONS
More terms from Emeric Deutsch, Dec 24 2004
STATUS
approved