login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of unitary divisors of 2n-1 (d such that d divides 2n-1, GCD(d,(2n-1)/d)=1). Bisection of A034444.
2

%I #16 Jan 28 2023 12:14:25

%S 1,2,2,2,2,2,2,4,2,2,4,2,2,2,2,2,4,4,2,4,2,2,4,2,2,4,2,4,4,2,2,4,4,2,

%T 4,2,2,4,4,2,2,2,4,4,2,4,4,4,2,4,2,2,8,2,2,4,2,4,4,4,2,4,2,2,4,2,4,4,

%U 2,2,4,4,4,4,2,2,4,4,2,4,4,2,8,2,2,4,2,4,4,2,2,4,4,4,4,2,2,8,2,2,4,4,4,4,4

%N Number of unitary divisors of 2n-1 (d such that d divides 2n-1, GCD(d,(2n-1)/d)=1). Bisection of A034444.

%F From _Ilya Gutkovskiy_, Apr 28 2017: (Start)

%F a(n) = [x^(2*n-1)] Sum_{k>=1} mu(k)^2*x^k/(1 - x^k).

%F a(n) = 2^omega(2*n-1). (End)

%F From _Amiram Eldar_, Jan 28 2023: (Start)

%F a(n) = A034444(2*n-1) = A068068(2*n-1).

%F Sum_{k=1..n} a(k) ~ 4*n*((log(n) + 2*gamma - 1 + 7*log(2)/3 - 2*zeta'(2)/zeta(2)) / Pi^2, where gamma is Euler's constant (A001620). (End)

%e a(13)=2 because among the three divisors of 25 only 1 and 25 are unitary.

%p with(numtheory): for n from 1 to 120 do printf(`%d,`,2^nops(ifactors(2*n-1)[2])) od: # _Emeric Deutsch_, Dec 24 2004

%t a[n_] := 2^PrimeNu[2*n-1]; Array[a, 100] (* _Amiram Eldar_, Jan 28 2023 *)

%o (PARI) a(n) = 2^omega(2*n-1); \\ _Amiram Eldar_, Jan 28 2023

%Y Cf. A001620, A034444, A068068, A100008.

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_, Nov 20 2004

%E More terms from _Emeric Deutsch_, Dec 24 2004