login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317525
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 2, 3, 4, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 8, 4, 8, 32, 32, 8, 16, 128, 248, 128, 16, 32, 512, 1921, 1921, 512, 32, 64, 2048, 14892, 28760, 14892, 2048, 64, 128, 8192, 115446, 431529, 431529, 115446, 8192, 128, 256, 32768, 894961, 6475106, 12547746, 6475106, 894961, 32768, 256, 512, 131072
OFFSET
1,2
COMMENTS
Table starts
...1......2........4...........8............16...............32
...2......8.......32.........128...........512.............2048
...4.....32......248........1921.........14892...........115446
...8....128.....1921.......28760........431529..........6475106
..16....512....14892......431529......12547746........364882328
..32...2048...115446.....6475106.....364882328......20564214798
..64...8192...894961....97158833...10610584063....1158965686460
.128..32768..6937925..1457871738..308552557709...65318143510572
.256.131072.53784248.21875422403.8972619323210.3681268128789010
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1)
k=3: a(n) = 8*a(n-1) -2*a(n-2) +a(n-3) -3*a(n-4)
k=4: a(n) = 15*a(n-1) +a(n-2) -8*a(n-3) -84*a(n-4) -63*a(n-5) +24*a(n-6) +20*a(n-7)
k=5: [order 22]
k=6: [order 59]
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..1. .0..0..0..0. .0..0..0..0. .0..0..0..1. .0..0..0..0
..1..1..1..0. .1..1..0..1. .1..1..0..1. .0..0..0..1. .0..1..0..0
..1..0..0..1. .1..0..1..0. .1..0..0..0. .1..1..0..0. .0..0..0..0
..1..1..0..1. .1..0..1..0. .1..1..0..0. .0..1..1..0. .1..1..0..0
..1..1..0..0. .0..1..1..1. .0..0..1..1. .0..1..1..1. .0..0..1..1
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A004171(n-1).
Sequence in context: A301784 A316808 A299654 * A300208 A303421 A301407
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jul 30 2018
STATUS
approved