login
A300208
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 8, 4, 8, 32, 32, 8, 16, 128, 248, 128, 16, 32, 512, 1933, 1933, 512, 32, 64, 2048, 15070, 29561, 15070, 2048, 64, 128, 8192, 117494, 451996, 451996, 117494, 8192, 128, 256, 32768, 916061, 6912249, 13548425, 6912249, 916061, 32768, 256, 512, 131072
OFFSET
1,2
COMMENTS
Table starts
...1......2........4...........8.............16...............32
...2......8.......32.........128............512.............2048
...4.....32......248........1933..........15070...........117494
...8....128.....1933.......29561.........451996..........6912249
..16....512....15070......451996.......13548425........406228452
..32...2048...117494.....6912249......406228452......23883950854
..64...8192...916061...105708560....12180207076....1404241937017
.128..32768..7142233..1616600364...365209429387...82562348427139
.256.131072.55685704.24722667407.10950385677546.4854250928660105
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1)
k=3: a(n) = 8*a(n-1) -2*a(n-2) +5*a(n-3) -13*a(n-4) -6*a(n-5)
k=4: [order 15]
k=5: [order 38]
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..1. .0..0..0..1. .0..0..0..0. .0..0..0..0. .0..0..0..1
..1..0..1..0. .1..0..0..0. .0..1..0..1. .0..1..0..1. .0..0..1..0
..0..1..1..0. .0..0..1..1. .1..0..1..1. .0..0..0..0. .0..0..1..0
..1..1..1..0. .0..0..0..0. .1..0..0..0. .1..0..0..0. .0..0..0..1
..0..1..0..0. .0..1..1..1. .0..1..1..1. .1..1..0..1. .1..0..1..0
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A004171(n-1).
Sequence in context: A316808 A299654 A317525 * A303421 A301407 A213418
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 28 2018
STATUS
approved