login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301407
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 5 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 8, 4, 8, 32, 32, 8, 16, 128, 252, 128, 16, 32, 512, 1988, 1988, 512, 32, 64, 2048, 15680, 31012, 15680, 2048, 64, 128, 8192, 123676, 483600, 483600, 123676, 8192, 128, 256, 32768, 975492, 7541492, 14905344, 7541492, 975492, 32768, 256, 512, 131072
OFFSET
1,2
COMMENTS
Table starts
...1......2........4...........8.............16...............32
...2......8.......32.........128............512.............2048
...4.....32......252........1988..........15680...........123676
...8....128.....1988.......31012.........483600..........7541492
..16....512....15680......483600.......14905344........459428416
..32...2048...123676.....7541492......459428416......27990353344
..64...8192...975492...117605364....14160945920....1705287652128
.128..32768..7694176..1833990416...436482419456..103893157740576
.256.131072.60687676.28600063044.13453684678656.6329599807409536
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1)
k=3: a(n) = 7*a(n-1) +7*a(n-2)
k=4: a(n) = 13*a(n-1) +40*a(n-2) +9*a(n-3) -29*a(n-4) +4*a(n-5)
k=5: [order 8] for n>9
k=6: [order 22] for n>23
k=7: [order 45] for n>47
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..0. .0..0..0..0. .0..0..0..1. .0..0..0..0. .0..0..0..1
..1..0..0..1. .0..0..0..0. .0..0..1..1. .0..0..0..1. .0..1..1..1
..1..0..1..1. .1..1..1..0. .0..0..1..0. .1..1..0..0. .1..1..1..1
..1..1..0..0. .1..1..0..0. .1..0..1..1. .0..1..0..1. .1..0..0..0
..0..0..0..0. .1..1..1..1. .1..1..0..1. .1..1..1..1. .1..1..0..1
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A004171(n-1).
Sequence in context: A317525 A300208 A303421 * A213418 A317517 A300182
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 20 2018
STATUS
approved