login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300182
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 8, 4, 8, 32, 32, 8, 16, 128, 255, 128, 16, 32, 512, 2033, 2033, 512, 32, 64, 2048, 16208, 32321, 16208, 2048, 64, 128, 8192, 129217, 513832, 513832, 129217, 8192, 128, 256, 32768, 1030173, 8168705, 16288960, 8168705, 1030173, 32768, 256, 512, 131072
OFFSET
1,2
COMMENTS
Table starts
...1......2........4...........8.............16...............32
...2......8.......32.........128............512.............2048
...4.....32......255........2033..........16208...........129217
...8....128.....2033.......32321.........513832..........8168705
..16....512....16208......513832.......16288960........516368256
..32...2048...129217.....8168705......516368256......32640586945
..64...8192..1030173...129863167....16369174784....2063278351093
.128..32768..8212978..2064518282...518912313824..130424025161538
.256.131072.65477359.32820974441.16449820393120.8244367994118153
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1)
k=3: a(n) = 7*a(n-1) +7*a(n-2) +6*a(n-3)
k=4: a(n) = 14*a(n-1) +27*a(n-2) +51*a(n-3) -10*a(n-4) -a(n-5) -10*a(n-6)
k=5: [order 9]
k=6: [order 15]
k=7: [order 36]
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..1. .0..0..0..1. .0..0..0..0. .0..0..0..1. .0..0..0..1
..1..0..0..0. .0..0..1..0. .1..0..1..1. .0..1..1..1. .0..1..1..0
..1..1..1..0. .1..0..0..1. .0..1..1..1. .0..1..0..0. .1..0..0..1
..1..0..0..0. .1..0..0..1. .1..1..1..0. .1..0..0..0. .1..0..1..1
..1..1..0..0. .0..0..0..0. .1..1..1..0. .1..0..0..0. .1..1..1..0
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A004171(n-1).
Sequence in context: A301407 A213418 A317517 * A317532 A222659 A116694
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 27 2018
STATUS
approved