login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222659
Table a(m,n) read by antidiagonals, m, n >= 1, where a(m,n) is the number of divide-and-conquer partitions of an m X n rectangle into integer sub-rectangles.
0
1, 2, 2, 4, 8, 4, 8, 34, 34, 8, 16, 148, 320, 148, 16, 32, 650, 3118, 3118, 650, 32, 64, 2864, 30752, 68480, 30752, 2864, 64, 128, 12634, 304618, 1525558, 1525558, 304618, 12634, 128
OFFSET
1,2
COMMENTS
The divide-and-conquer partition of an integer-sided rectangle is one that can be obtained by repeated bisections into adjacent integer-sided rectangles.
The table is symmetric: a(m,n) = a(n,m).
EXAMPLE
Table begins:
1, 2, 4, 8, 16, 32, 64, ...
2, 8, 34, 148, 650, 2864, 12634, ...
4, 34, 320, 3118, 30752, 304618, 3022112, ...
8, 148, 3118, 68480, 1525558, ...
16, 650, 30752, 1525558, ...
32, 2864, 304618, ...
64, 12634, 3022112, ...
Not every partition (cf. A116694) into integer sub-rectangles is divide-and-conquer. For example, the following partition of a 3 X 3 rectangle into 5 sub-rectangles is not divide-and-conquer:
112
342
355
CROSSREFS
a(1,n) = a(n,1) = A000079(n-1)
a(2,n) = a(n,2) = A034999(n)
Cf. A116694 (all partitions).
Sequence in context: A317517 A300182 A317532 * A116694 A220810 A221024
KEYWORD
tabl,nonn,more
AUTHOR
Arsenii Abdrafikov, May 29 2013
STATUS
approved