login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A221024
T(n,k)=Equals one maps: number of nXk binary arrays indicating the locations of corresponding elements equal to exactly one of their horizontal, vertical and antidiagonal neighbors in a random 0..3 nXk array
4
1, 2, 2, 4, 8, 4, 8, 38, 38, 8, 16, 168, 371, 168, 16, 32, 726, 3474, 3474, 726, 32, 64, 3088, 30167, 62944, 30167, 3088, 64, 128, 12974, 251674, 1038208, 1038208, 251674, 12974, 128, 256, 54000, 2055232, 16735744, 33512960, 16735744, 2055232, 54000, 256, 512
OFFSET
1,2
COMMENTS
Table starts
...1......2........4.........8.........16.........32..........64........128
...2......8.......38.......168........726.......3088.......12974......54000
...4.....38......371......3474......30167.....251674.....2055232...16609480
...8....168.....3474.....62944....1038208...16735744...268269568.4294303744
..16....726....30167...1038208...33512960.1073575936.34359074816
..32...3088...251674..16735744.1073575936
..64..12974..2055232.268269568
.128..54000.16609480
.256.223118
.512
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 7*a(n-1) -11*a(n-2) -3*a(n-3) -4*a(n-4)
k=3: a(n) = 12*a(n-1) -30*a(n-2) -24*a(n-3) +63*a(n-4) +12*a(n-5) -32*a(n-6) for n>11
k=4: a(n) = 20*a(n-1) -64*a(n-2) for n>5
k=5: a(n) = 36*a(n-1) -128*a(n-2) for n>5
EXAMPLE
Some solutions for n=3 k=4
..1..0..0..0....0..0..0..1....0..0..1..1....0..0..0..1....1..0..0..0
..0..1..0..0....0..0..1..0....0..0..0..0....0..1..0..0....0..1..1..0
..1..1..1..1....0..1..0..0....0..0..1..0....0..0..1..1....0..0..0..0
CROSSREFS
Column 1 is A000079(n-1)
Column 2 is A220806
Sequence in context: A222659 A116694 A220810 * A220545 A220751 A220967
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Dec 28 2012
STATUS
approved