login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A317517
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 2, 3, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 8, 4, 8, 32, 32, 8, 16, 128, 255, 128, 16, 32, 512, 2032, 2032, 512, 32, 64, 2048, 16193, 32256, 16193, 2048, 64, 128, 8192, 129042, 512096, 512096, 129042, 8192, 128, 256, 32768, 1028335, 8130048, 16198017, 8130048, 1028335, 32768, 256, 512, 131072
OFFSET
1,2
COMMENTS
Table starts
...1......2........4...........8.............16...............32
...2......8.......32.........128............512.............2048
...4.....32......255........2032..........16193...........129042
...8....128.....2032.......32256.........512096..........8130048
..16....512....16193......512096.......16198017........512358002
..32...2048...129042.....8130048......512358002......32289056648
..64...8192..1028335...129072576....16206294085....2034862700902
.128..32768..8194796..2049155072...512618027974..128237436273216
.256.131072.65304285.32532368768.16214518668763.8081548422775938
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1)
k=3: a(n) = 8*a(n-1) -a(n-2) +6*a(n-3)
k=4: a(n) = 16*a(n-1) -6*a(n-2) +64*a(n-3)
k=5: [order 8]
k=6: [order 15]
k=7: [order 34]
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
..0..0..0..0. .0..1..0..0. .1..0..0..1. .1..0..1..1. .0..1..0..0
..1..0..1..1. .1..1..1..1. .0..1..0..0. .1..1..1..0. .1..0..0..0
..0..0..0..0. .1..0..0..1. .0..0..1..1. .1..0..0..1. .1..0..1..1
..1..1..1..1. .1..1..1..0. .1..0..0..1. .0..0..1..0. .0..0..0..0
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A004171(n-1).
Sequence in context: A303421 A301407 A213418 * A300182 A317532 A222659
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jul 30 2018
STATUS
approved