login
A300181
Number of nX7 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
1
64, 8192, 1030173, 129863167, 16369174784, 2063278351093, 260070240849459, 32781090037299062, 4131960022047721567, 520821416209744052297, 65648008688636835949268, 8274738539126604112006219
OFFSET
1,1
COMMENTS
Column 7 of A300182.
LINKS
FORMULA
Empirical: a(n) = 97*a(n-1) +3088*a(n-2) +67900*a(n-3) +535436*a(n-4) +2144795*a(n-5) -39382635*a(n-6) -213273215*a(n-7) -1235565240*a(n-8) +12972062418*a(n-9) +2059782972*a(n-10) +287987017773*a(n-11) -1980551434156*a(n-12) +3078770034830*a(n-13) -22203993412729*a(n-14) +101282540869525*a(n-15) -131715576796751*a(n-16) +333153092704465*a(n-17) -1056455148776635*a(n-18) +1026244621587398*a(n-19) -1369366946312888*a(n-20) +3232027833916319*a(n-21) -1994557701400422*a(n-22) +1395753902831496*a(n-23) -3199229715521332*a(n-24) +1005729187047661*a(n-25) -486817052344206*a(n-26) +1362625629257738*a(n-27) -90977526307851*a(n-28) +87273022628065*a(n-29) -232774941539811*a(n-30) -29987016428365*a(n-31) -9185710451925*a(n-32) +6574031318250*a(n-33) +5832575910000*a(n-34) +1233792000000*a(n-35) +1786050000000*a(n-36)
EXAMPLE
Some solutions for n=5
..0..0..0..0..1..0..1. .0..0..0..0..0..1..0. .0..0..0..0..0..1..0
..0..0..0..0..1..0..0. .0..0..0..0..1..1..1. .0..0..0..0..1..1..1
..0..0..1..0..1..1..0. .0..0..1..0..1..0..0. .0..0..1..0..1..1..1
..0..0..0..0..0..1..0. .0..0..0..0..0..1..1. .0..0..0..0..1..0..1
..0..0..0..0..0..0..1. .0..0..0..1..0..0..1. .0..0..0..0..1..1..0
CROSSREFS
Cf. A300182.
Sequence in context: A301406 A303426 A317516 * A183499 A187702 A184764
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 27 2018
STATUS
approved