login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nX7 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.
1

%I #4 Feb 27 2018 12:32:01

%S 64,8192,1030173,129863167,16369174784,2063278351093,260070240849459,

%T 32781090037299062,4131960022047721567,520821416209744052297,

%U 65648008688636835949268,8274738539126604112006219

%N Number of nX7 0..1 arrays with every element equal to 0, 1, 2, 3, 4, 5, 6 or 7 king-move adjacent elements, with upper left element zero.

%C Column 7 of A300182.

%H R. H. Hardin, <a href="/A300181/b300181.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 97*a(n-1) +3088*a(n-2) +67900*a(n-3) +535436*a(n-4) +2144795*a(n-5) -39382635*a(n-6) -213273215*a(n-7) -1235565240*a(n-8) +12972062418*a(n-9) +2059782972*a(n-10) +287987017773*a(n-11) -1980551434156*a(n-12) +3078770034830*a(n-13) -22203993412729*a(n-14) +101282540869525*a(n-15) -131715576796751*a(n-16) +333153092704465*a(n-17) -1056455148776635*a(n-18) +1026244621587398*a(n-19) -1369366946312888*a(n-20) +3232027833916319*a(n-21) -1994557701400422*a(n-22) +1395753902831496*a(n-23) -3199229715521332*a(n-24) +1005729187047661*a(n-25) -486817052344206*a(n-26) +1362625629257738*a(n-27) -90977526307851*a(n-28) +87273022628065*a(n-29) -232774941539811*a(n-30) -29987016428365*a(n-31) -9185710451925*a(n-32) +6574031318250*a(n-33) +5832575910000*a(n-34) +1233792000000*a(n-35) +1786050000000*a(n-36)

%e Some solutions for n=5

%e ..0..0..0..0..1..0..1. .0..0..0..0..0..1..0. .0..0..0..0..0..1..0

%e ..0..0..0..0..1..0..0. .0..0..0..0..1..1..1. .0..0..0..0..1..1..1

%e ..0..0..1..0..1..1..0. .0..0..1..0..1..0..0. .0..0..1..0..1..1..1

%e ..0..0..0..0..0..1..0. .0..0..0..0..0..1..1. .0..0..0..0..1..0..1

%e ..0..0..0..0..0..0..1. .0..0..0..1..0..0..1. .0..0..0..0..1..1..0

%Y Cf. A300182.

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 27 2018