login
A308500
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = Sum_{j=0..n} binomial(k*n,k*j).
2
1, 1, 2, 1, 2, 3, 1, 2, 4, 4, 1, 2, 8, 8, 5, 1, 2, 22, 32, 16, 6, 1, 2, 72, 170, 128, 32, 7, 1, 2, 254, 992, 1366, 512, 64, 8, 1, 2, 926, 6008, 16512, 10922, 2048, 128, 9, 1, 2, 3434, 37130, 215766, 261632, 87382, 8192, 256, 10, 1, 2, 12872, 232562, 2973350, 6643782, 4196352, 699050, 32768, 512, 11
OFFSET
0,3
LINKS
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, ...
3, 4, 8, 22, 72, 254, ...
4, 8, 32, 170, 992, 6008, ...
5, 16, 128, 1366, 16512, 215766, ...
6, 32, 512, 10922, 261632, 6643782, ...
7, 64, 2048, 87382, 4196352, 215492564, ...
MATHEMATICA
T[n_, k_] := Sum[Binomial[k*n, k*j], {j, 0, n}] ; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 12 2021 *)
CROSSREFS
Main diagonal gives A167009.
Sequence in context: A347570 A116925 A309010 * A210950 A214314 A209435
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jun 01 2019
STATUS
approved