login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308499
Expansion of e.g.f. log(1 + Sum_{k>=1} (k+1)*(k+2)/6 * x^k).
1
0, 1, 3, 10, 34, 104, 200, -400, -2800, 85120, 2163840, 30240000, 285331200, 1247769600, -15759744000, -392840448000, -1587505920000, 123384188928000, 4345827053568000, 82159404687360000, 749393890172928000, -10215518583029760000, -570363673124044800000, -9916595355495628800000
OFFSET
0,3
FORMULA
a(n) = (1/6) * ((n+2)! - Sum_{k=1..n-1} binomial(n-1,k) * (k+2)! * a(n-k)).
From Vaclav Kotesovec, May 12 2021: (Start)
E.g.f: log(2/3 + 1/(3*(1 - x)^3)).
a(n) ~ -2^(n/2 + 1) * (n-1)! * cos(n*arctan(sqrt(3)/(1 - 2^(4/3)))) / (2 + 2^(1/3) - 2^(2/3))^(n/2). (End)
MATHEMATICA
a[0] = 0; a[n_] := a[n] = ((n+2)! - Sum[Binomial[n-1, k] * (k+2)! * a[n-k], {k, 1, n-1}])/6; Array[a, 24, 0] (* Amiram Eldar, May 12 2021 *)
nmax = 25; CoefficientList[Series[Log[2/3 + 1/(3*(1 - x)^3)], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, May 12 2021 *)
PROG
(PARI) {a(n) = if (n<1, 0, ((n+2)!-sum(k=1, n-1, binomial(n-1, k)*(k+2)!*a(n-k)))/6)}
CROSSREFS
Column k=3 of A308497.
Sequence in context: A145928 A006535 A041633 * A034215 A193036 A083580
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 01 2019
STATUS
approved