The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A308499 Expansion of e.g.f. log(1 + Sum_{k>=1} (k+1)*(k+2)/6 * x^k). 1
 0, 1, 3, 10, 34, 104, 200, -400, -2800, 85120, 2163840, 30240000, 285331200, 1247769600, -15759744000, -392840448000, -1587505920000, 123384188928000, 4345827053568000, 82159404687360000, 749393890172928000, -10215518583029760000, -570363673124044800000, -9916595355495628800000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..23. FORMULA a(n) = (1/6) * ((n+2)! - Sum_{k=1..n-1} binomial(n-1,k) * (k+2)! * a(n-k)). From Vaclav Kotesovec, May 12 2021: (Start) E.g.f: log(2/3 + 1/(3*(1 - x)^3)). a(n) ~ -2^(n/2 + 1) * (n-1)! * cos(n*arctan(sqrt(3)/(1 - 2^(4/3)))) / (2 + 2^(1/3) - 2^(2/3))^(n/2). (End) MATHEMATICA a[0] = 0; a[n_] := a[n] = ((n+2)! - Sum[Binomial[n-1, k] * (k+2)! * a[n-k], {k, 1, n-1}])/6; Array[a, 24, 0] (* Amiram Eldar, May 12 2021 *) nmax = 25; CoefficientList[Series[Log[2/3 + 1/(3*(1 - x)^3)], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, May 12 2021 *) PROG (PARI) {a(n) = if (n<1, 0, ((n+2)!-sum(k=1, n-1, binomial(n-1, k)*(k+2)!*a(n-k)))/6)} CROSSREFS Column k=3 of A308497. Sequence in context: A145928 A006535 A041633 * A034215 A193036 A083580 Adjacent sequences: A308496 A308497 A308498 * A308500 A308501 A308502 KEYWORD sign AUTHOR Seiichi Manyama, Jun 01 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 15 11:27 EDT 2024. Contains 374332 sequences. (Running on oeis4.)