OFFSET
0,3
FORMULA
a(n) = (1/6) * ((n+2)! - Sum_{k=1..n-1} binomial(n-1,k) * (k+2)! * a(n-k)).
From Vaclav Kotesovec, May 12 2021: (Start)
E.g.f: log(2/3 + 1/(3*(1 - x)^3)).
a(n) ~ -2^(n/2 + 1) * (n-1)! * cos(n*arctan(sqrt(3)/(1 - 2^(4/3)))) / (2 + 2^(1/3) - 2^(2/3))^(n/2). (End)
MATHEMATICA
a[0] = 0; a[n_] := a[n] = ((n+2)! - Sum[Binomial[n-1, k] * (k+2)! * a[n-k], {k, 1, n-1}])/6; Array[a, 24, 0] (* Amiram Eldar, May 12 2021 *)
nmax = 25; CoefficientList[Series[Log[2/3 + 1/(3*(1 - x)^3)], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, May 12 2021 *)
PROG
(PARI) {a(n) = if (n<1, 0, ((n+2)!-sum(k=1, n-1, binomial(n-1, k)*(k+2)!*a(n-k)))/6)}
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jun 01 2019
STATUS
approved