login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308473
Sum of numbers < n which have common prime factors with n.
1
0, 0, 0, 2, 0, 9, 0, 12, 9, 25, 0, 42, 0, 49, 45, 56, 0, 99, 0, 110, 84, 121, 0, 180, 50, 169, 108, 210, 0, 315, 0, 240, 198, 289, 175, 414, 0, 361, 273, 460, 0, 609, 0, 506, 450, 529, 0, 744, 147, 725, 459, 702, 0, 945, 385, 868, 570, 841, 0, 1290, 0, 961, 819, 992, 520
OFFSET
1,4
FORMULA
G.f.: -x^2*(2 - x)/(1 - x)^2 - Sum_{k>=2} mu(k)*k*x^k/(1 - x^k)^3.
a(n) = Sum_{k=1..n-1, gcd(n,k) > 1} k.
a(n) = n*(n - phi(n) - 1)/2 for n > 1
a(n) = n*A016035(n)/2.
a(n) = A000217(n-1) - A023896(n) for n > 1.
a(n) = A067392(n) - n for n > 1.
a(n) = 0 if n is in A008578.
Sum_{k=1..n} a(k) ~ (1/6 - 1/Pi^2)*n^3. - Vaclav Kotesovec, May 30 2019
MATHEMATICA
nmax = 65; CoefficientList[Series[-x^2 (2 - x)/(1 - x)^2 - Sum[MoebiusMu[k] k x^k/(1 - x^k)^3, {k, 2, nmax}], {x, 0, nmax}], x] // Rest
a[n_] := Sum[If[GCD[n, k] > 1, k, 0], {k, 1, n - 1}]; Table[a[n], {n, 1, 65}]
Join[{0}, Table[n (n - EulerPhi[n] - 1)/2, {n, 2, 65}]]
PROG
(PARI) a(n) = sum(k=1, n-1, if (gcd(n, k)>1, k)); \\ Michel Marcus, May 31 2019
(Python)
from sympy import totient
def A308473(n): return n*(n-totient(n)-1)>>1 if n>1 else 0 # Chai Wah Wu, Nov 06 2023
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 29 2019
STATUS
approved