login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A237289
Sum of positive numbers k <= sigma(n) that are not a sum of any subset of distinct divisors of n.
4
0, 0, 2, 0, 9, 0, 20, 0, 39, 27, 54, 0, 77, 108, 108, 0, 135, 0, 170, 0, 272, 378, 252, 0, 372, 567, 500, 0, 405, 0, 464, 0, 792, 1053, 792, 0, 665, 1350, 1148, 0, 819, 0, 902, 882, 897, 2052, 1080, 0, 1425, 1395, 2052, 1715, 1377, 0, 2052, 0, 2600, 3375, 1710
OFFSET
1,3
FORMULA
a(n) = A184387(n) - A237290(n).
a(p) = p(p - 1) / 2 - 1 for p = prime > 2.
a(n) = 0 for practical numbers (A005153), a(n) > 0 for numbers that are not practical (A237287).
a(n) = A184387(n) - A229335(n) for numbers n such that A119347(n) = A100587(n).
EXAMPLE
For n = 5, a(5) = 2 + 3 + 4 = 9 (numbers 2, 3 and 4 are not a sum of any subset of distinct divisors of 5).
Numbers n = 14 and 15 are an interesting pair of consecutive numbers with identical value of sigma(n) such that simultaneously a(14) = a(15) and A237290(14) = A237290(15).
a(14) = 4+5+6+11+12+13+18+19+20 = a(15) = 2+7+10+11+12+13+14+17+22 = 108.
MAPLE
isSumDist := proc(n, k)
local dvs ;
dvs := numtheory[divisors](n) ;
for s in combinat[powerset](dvs) do
add(m, m=op(s)) ;
if % = k then
return true;
end if;
end do:
false ;
end proc:
A237289 := proc(n)
local a;
a := 0 ;
for k from 1 to numtheory[sigma](n) do
if not isSumDist(n, k) then
a := a+k;
end if;
end do:
a ;
end proc:
seq(A237289(n), n=1..20) ; # R. J. Mathar, Mar 13 2014
MATHEMATICA
a[n_] := Block[{d = Divisors@n, s}, s = Plus @@ d; s*(s + 1)/2 - Plus @@ Union[Plus @@@ Subsets@d]]; m = Array[a, 59] (* Giovanni Resta, Mar 13 2014 *)
PROG
(Python)
from sympy import divisors
def A237289(n):
ds = divisors(n)
c, s = {0}, sum(ds)
for d in ds:
c |= {a+d for a in c}
return (s*(s+1)>>1)-sum(a for a in c if 1<=a<=s) # Chai Wah Wu, Jul 05 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Mar 02 2014
EXTENSIONS
a(55) and a(57)-a(59) corrected by Giovanni Resta, Mar 13 2014
STATUS
approved