login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184387
a(n) = sum of numbers from 1 to sigma(n), where sigma(n) = A000203(n).
9
1, 6, 10, 28, 21, 78, 36, 120, 91, 171, 78, 406, 105, 300, 300, 496, 171, 780, 210, 903, 528, 666, 300, 1830, 496, 903, 820, 1596, 465, 2628, 528, 2016, 1176, 1485, 1176, 4186, 741, 1830, 1596, 4095, 903, 4656, 990, 3570, 3081, 2628, 1176, 7750, 1653, 4371
OFFSET
1,2
FORMULA
a(n) = Sum_{i = 1..sigma(n)} i = A000217(A000203(n)) = A000203(n)*(A000203(n) + 1)/2.
Sum_{k=1..n} a(k) = (5*zeta(3)/12) * n^3 + O(n^2*log(n)^2). - Amiram Eldar, Dec 08 2022
EXAMPLE
For n = 4; sigma(4) = 7; a(4) = 1+2+3+4+5+6+7 = 28.
MATHEMATICA
Array[PolygonalNumber@ DivisorSigma[1, #] &, 50] (* Michael De Vlieger, Nov 16 2017 *)
PROG
(PARI) a(n)=binomial(sigma(n)+1, 2) \\ Charles R Greathouse IV, Feb 14 2013
(Python)
from sympy import divisor_sigma
def A184387(n): return (m:=divisor_sigma(n))*(m+1)>>1 # Chai Wah Wu, Jul 05 2023
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jan 12 2011
STATUS
approved