login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067392
Sum of numbers <= n which have common prime factors with n.
11
0, 2, 3, 6, 5, 15, 7, 20, 18, 35, 11, 54, 13, 63, 60, 72, 17, 117, 19, 130, 105, 143, 23, 204, 75, 195, 135, 238, 29, 345, 31, 272, 231, 323, 210, 450, 37, 399, 312, 500, 41, 651, 43, 550, 495, 575, 47, 792, 196, 775, 510, 754, 53, 999, 440, 924, 627, 899, 59
OFFSET
1,2
COMMENTS
Sum of k <= n such that gcd(n,k) > 1.
V. S. Guba conjectured that for any positive n and prime p, a(n) != a(n+p). - Max Alekseyev, May 08 2024
LINKS
FORMULA
a(n) = n(n+1)/2 - n*phi(n)/2 = A000217(n)-A023896(n), for n>=2.
Not multiplicative.
a(p) = p where p is a prime; a(2^k) = 2^(k-1)*(2^(k-1) + 1).
G.f.: -Sum_{k>=2} mu(k)*k*x^k/(1 - x^k)^3. - Ilya Gutkovskiy, May 28 2019
Sum_{k=1..n} a(k) ~ (1/6 - 1/(Pi^2)) * n^3. - Amiram Eldar, Dec 03 2023
EXAMPLE
For n=24, a(24) = 2+3+4+6+8+9+10+12+14+15+16+18+20+21+22+24 = 204.
MATHEMATICA
a[n_] := Plus@@Select[Range[1, n], GCD[ #, n]>1&]
Join[{0}, Table[n (n + 1) / 2 - n EulerPhi@(n) / 2, {n, 2, 60}]] (* Vincenzo Librandi, Jul 19 2019 *)
PROG
(PARI) A067392(n)={a=0; for(i=1, n, if(gcd(i, n)<>1, a=a+i)); a}
(PARI) a(n) = sum(k=1, n, k*(gcd(k, n) != 1)); \\ Michel Marcus, May 08 2018
(PARI) a(n) = if(n == 1, 0, n*(n + 1 - eulerphi(n))/2); \\ Amiram Eldar, Dec 03 2023
(Magma) [0] cat [n*(n+1)/2-n*EulerPhi(n)/2: n in [2..60]]; // Vincenzo Librandi, Jul 19 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Jan 22 2002
STATUS
approved