Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #58 Aug 18 2024 23:04:12
%S 0,2,3,6,5,15,7,20,18,35,11,54,13,63,60,72,17,117,19,130,105,143,23,
%T 204,75,195,135,238,29,345,31,272,231,323,210,450,37,399,312,500,41,
%U 651,43,550,495,575,47,792,196,775,510,754,53,999,440,924,627,899,59
%N Sum of numbers <= n which have common prime factors with n.
%C Sum of k <= n such that gcd(n,k) > 1.
%C V. S. Guba conjectured that for any positive n and prime p, a(n) != a(n+p). - _Max Alekseyev_, May 08 2024
%H Ivan Neretin, <a href="/A067392/b067392.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = n(n+1)/2 - n*phi(n)/2 = A000217(n)-A023896(n), for n>=2.
%F Not multiplicative.
%F a(p) = p where p is a prime; a(2^k) = 2^(k-1)*(2^(k-1) + 1).
%F G.f.: -Sum_{k>=2} mu(k)*k*x^k/(1 - x^k)^3. - _Ilya Gutkovskiy_, May 28 2019
%F Sum_{k=1..n} a(k) ~ (1/6 - 1/(Pi^2)) * n^3. - _Amiram Eldar_, Dec 03 2023
%e For n=24, a(24) = 2+3+4+6+8+9+10+12+14+15+16+18+20+21+22+24 = 204.
%t a[n_] := Plus@@Select[Range[1, n], GCD[ #, n]>1&]
%t Join[{0}, Table[n (n + 1) / 2 - n EulerPhi@(n) / 2, {n, 2, 60}]] (* _Vincenzo Librandi_, Jul 19 2019 *)
%o (PARI) A067392(n)={a=0; for(i=1, n, if(gcd(i, n)<>1, a=a+i)); a}
%o (PARI) a(n) = sum(k=1, n, k*(gcd(k, n) != 1)); \\ _Michel Marcus_, May 08 2018
%o (PARI) a(n) = if(n == 1, 0, n*(n + 1 - eulerphi(n))/2); \\ _Amiram Eldar_, Dec 03 2023
%o (Magma) [0] cat [n*(n+1)/2-n*EulerPhi(n)/2: n in [2..60]]; // _Vincenzo Librandi_, Jul 19 2019
%Y Cf. A000203, A000217, A023896, A024816.
%K nonn,easy
%O 1,2
%A _Labos Elemer_, Jan 22 2002