login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A308470 a(n) = (gcd(phi(n), 4*n^2 - 1) - 1)/2, where phi is A000010, Euler's totient function. 1
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 7, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 4, 7, 0, 1, 0, 0, 2, 0, 0, 0, 1, 3, 2, 0, 0, 1, 0, 2, 0, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,22

COMMENTS

2*a(n) + 1 = gcd(phi(2*n), (2*n - 1)*(2*n + 1)).

a(A000040(n)) = A099618(n).

Records occur at n = 1, 7, 22, 62, 172, 213, 372, 427, 473, ...

LINKS

Table of n, a(n) for n=1..95.

FORMULA

a(A000040(n)) = A099618(n).

a(A002476(n)) = 1.

a(A045309(n)) = 0.

EXAMPLE

a(7) = 1 because (gcd(phi(7), 4*7^2 - 1) - 1)/2 = (gcd(6, 195) - 1)/2 = (3 - 1)/2 = 1.

MATHEMATICA

Table[(GCD[EulerPhi[n], 4n^2 - 1] - 1)/2, {n, 100}] (* Alonso del Arte, May 30 2019 *)

PROG

(MAGMA) [(Gcd(EulerPhi(n), 4*n^2-1)-1)/2: n in [1..95]];

(Python)

from fractions import gcd

def A000010(n):

    if n == 1:

        return 1

    d, m = 1, 0

    while d < n:

        if gcd(d, n) == 1:

            m = m+1

        d = d+1

    return m

n = 0

while n < 30:

    n = n+1

    print(n, (gcd(A000010(n), 4*n**2-1)-1)//2) # A.H.M. Smeets, Aug 18 2019

CROSSREFS

Cf. A000010, A000040, A002476, A045309, A099618.

Sequence in context: A085983 A285701 A088183 * A070140 A081212 A280751

Adjacent sequences:  A308467 A308468 A308469 * A308471 A308472 A308473

KEYWORD

nonn

AUTHOR

Juri-Stepan Gerasimov, May 29 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 17:02 EDT 2020. Contains 334630 sequences. (Running on oeis4.)