login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308470
a(n) = (gcd(phi(n), 4*n^2 - 1) - 1)/2, where phi is A000010, Euler's totient function.
1
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 7, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 4, 7, 0, 1, 0, 0, 2, 0, 0, 0, 1, 3, 2, 0, 0, 1, 0, 2, 0, 4
OFFSET
1,22
COMMENTS
2*a(n) + 1 = gcd(phi(2*n), (2*n - 1)*(2*n + 1)).
a(A000040(n)) = A099618(n).
Records occur at n = 1, 7, 22, 62, 172, 213, 372, 427, 473, ...
FORMULA
a(A000040(n)) = A099618(n).
a(A002476(n)) = 1.
a(A045309(n)) = 0.
EXAMPLE
a(7) = 1 because (gcd(phi(7), 4*7^2 - 1) - 1)/2 = (gcd(6, 195) - 1)/2 = (3 - 1)/2 = 1.
MATHEMATICA
Table[(GCD[EulerPhi[n], 4n^2 - 1] - 1)/2, {n, 100}] (* Alonso del Arte, May 30 2019 *)
PROG
(Magma) [(Gcd(EulerPhi(n), 4*n^2-1)-1)/2: n in [1..95]];
(Python)
from fractions import gcd
def A000010(n):
if n == 1:
return 1
d, m = 1, 0
while d < n:
if gcd(d, n) == 1:
m = m+1
d = d+1
return m
n = 0
while n < 30:
n = n+1
print(n, (gcd(A000010(n), 4*n**2-1)-1)//2) # A.H.M. Smeets, Aug 18 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved