OFFSET
0,6
COMMENTS
T(n,k) is the number of basis elements in the order-n Brauer algebra that have propagation number k. - John M. Campbell, Dec 08 2021
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
FORMULA
EXAMPLE
T(3,1)=9 because we have (12)(35)(46), (14)(26)(35), (16)(24)(35), (23)(15)(46), (25)(13)(46), (34)(15)(26), (36)(15)(24), (45)(13)(26), (56)(13)(24).
Triangle starts:
1;
0, 1;
1, 0, 2;
0, 9, 0, 6;
9, 0, 72, 0, 24;
MAPLE
T := proc (n, k) if `mod`(n-k, 2) = 1 then 0 else binomial(n, k)^2*factorial(k)*(product(2*j-1, j = 1 .. (1/2)*n-(1/2)*k))^2 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form
PROG
(PARI) dfo(n) = if (n<0, (-1)^n/dfo(-n), (2*n)! / n! / 2^n); \\ A001147
T(n, k) = if ((n-k)%2, 0, k!*binomial(n, k)^2*dfo((n-k)/2)^2);
row(n) = vector(n+1, k, T(n, k-1)) \\ Michel Marcus, Dec 09 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jun 02 2009
STATUS
approved