login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161119
Triangle read by rows: T(n,k) is the number of fixed-point-free involutions of {1,2,...,2n} having k cycles with entries of opposite parities (0 <= k <= n).
4
1, 0, 1, 1, 0, 2, 0, 9, 0, 6, 9, 0, 72, 0, 24, 0, 225, 0, 600, 0, 120, 225, 0, 4050, 0, 5400, 0, 720, 0, 11025, 0, 66150, 0, 52920, 0, 5040, 11025, 0, 352800, 0, 1058400, 0, 564480, 0, 40320, 0, 893025, 0, 9525600, 0, 17146080, 0, 6531840, 0, 362880, 893025, 0, 44651250, 0, 238140000, 0, 285768000, 0, 81648000, 0, 3628800
OFFSET
0,6
COMMENTS
T(n,k) is the number of basis elements in the order-n Brauer algebra that have propagation number k. - John M. Campbell, Dec 08 2021
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
FORMULA
T(n,k) = k!*binomial(n,k)^2*(n-k-1)!!^2 if n-k is even; T(n,k) = 0 if n-k is odd.
Sum of row n = (2n-1)!! = A001147(n).
T(n,n) = n! = A000142(n).
T(2n,0) = A001818(n).
Sum_{k>=0} k*T(n,k) = n^2*(2n-3)!! = A161120(n).
EXAMPLE
T(3,1)=9 because we have (12)(35)(46), (14)(26)(35), (16)(24)(35), (23)(15)(46), (25)(13)(46), (34)(15)(26), (36)(15)(24), (45)(13)(26), (56)(13)(24).
Triangle starts:
1;
0, 1;
1, 0, 2;
0, 9, 0, 6;
9, 0, 72, 0, 24;
MAPLE
T := proc (n, k) if `mod`(n-k, 2) = 1 then 0 else binomial(n, k)^2*factorial(k)*(product(2*j-1, j = 1 .. (1/2)*n-(1/2)*k))^2 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form
PROG
(PARI) dfo(n) = if (n<0, (-1)^n/dfo(-n), (2*n)! / n! / 2^n); \\ A001147
T(n, k) = if ((n-k)%2, 0, k!*binomial(n, k)^2*dfo((n-k)/2)^2);
row(n) = vector(n+1, k, T(n, k-1)) \\ Michel Marcus, Dec 09 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jun 02 2009
STATUS
approved