Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Dec 20 2021 05:53:01
%S 1,0,1,1,0,2,0,9,0,6,9,0,72,0,24,0,225,0,600,0,120,225,0,4050,0,5400,
%T 0,720,0,11025,0,66150,0,52920,0,5040,11025,0,352800,0,1058400,0,
%U 564480,0,40320,0,893025,0,9525600,0,17146080,0,6531840,0,362880,893025,0,44651250,0,238140000,0,285768000,0,81648000,0,3628800
%N Triangle read by rows: T(n,k) is the number of fixed-point-free involutions of {1,2,...,2n} having k cycles with entries of opposite parities (0 <= k <= n).
%C T(n,k) is the number of basis elements in the order-n Brauer algebra that have propagation number k. - _John M. Campbell_, Dec 08 2021
%H Andrew Howroyd, <a href="/A161119/b161119.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50)
%F T(n,k) = k!*binomial(n,k)^2*(n-k-1)!!^2 if n-k is even; T(n,k) = 0 if n-k is odd.
%F Sum of row n = (2n-1)!! = A001147(n).
%F T(n,n) = n! = A000142(n).
%F T(2n,0) = A001818(n).
%F Sum_{k>=0} k*T(n,k) = n^2*(2n-3)!! = A161120(n).
%e T(3,1)=9 because we have (12)(35)(46), (14)(26)(35), (16)(24)(35), (23)(15)(46), (25)(13)(46), (34)(15)(26), (36)(15)(24), (45)(13)(26), (56)(13)(24).
%e Triangle starts:
%e 1;
%e 0, 1;
%e 1, 0, 2;
%e 0, 9, 0, 6;
%e 9, 0, 72, 0, 24;
%p T := proc (n, k) if `mod`(n-k, 2) = 1 then 0 else binomial(n, k)^2*factorial(k)*(product(2*j-1, j = 1 .. (1/2)*n-(1/2)*k))^2 end if end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form
%o (PARI) dfo(n) = if (n<0, (-1)^n/dfo(-n), (2*n)! / n! / 2^n); \\ A001147
%o T(n,k) = if ((n-k)%2, 0, k!*binomial(n,k)^2*dfo((n-k)/2)^2);
%o row(n) = vector(n+1, k, T(n,k-1)) \\ _Michel Marcus_, Dec 09 2021
%Y Cf. A000142, A001147, A001818, A161120, A161121, A161122.
%K nonn,tabl
%O 0,6
%A _Emeric Deutsch_, Jun 02 2009