login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A308422 a(n) = n^2 if n odd, 3*n^2/4 if n even. 4
0, 1, 3, 9, 12, 25, 27, 49, 48, 81, 75, 121, 108, 169, 147, 225, 192, 289, 243, 361, 300, 441, 363, 529, 432, 625, 507, 729, 588, 841, 675, 961, 768, 1089, 867, 1225, 972, 1369, 1083, 1521, 1200, 1681, 1323, 1849, 1452, 2025, 1587, 2209, 1728, 2401, 1875, 2601, 2028, 2809, 2187, 3025 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Moebius transform of A076577.

LINKS

Amiram Eldar, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).

FORMULA

G.f.: x*(1 + 3*x + 6*x^2 + 3*x^3 + x^4)/(1 - x^2)^3.

G.f.: Sum_{k>=1} J_2(k)*x^k/(1 - x^(2*k)), where J_2() is the Jordan function (A007434).

E.g.f.: x*((4 + 3*x)*cosh(x) + (3 + 4*x)*sinh(x))/4.

Dirichlet g.f.: zeta(s-2)*(1 - 1/2^s).

a(n) = (7 - (-1)^n)*n^2/8.

a(n) = Sum_{d|n, n/d odd} J_2(d).

a(2*k+1) = A016754(k), a(2*k) = A033428(k).

Sum_{n>=1} 1/a(n) = 13*Pi^2/72 = 1.7820119057522453061...

Sum_{n>=1} (-1)^(n+1)/a(n) = 5*Pi^2/72 = 0.68538919452009434853...

Multiplicative with a(2^e) = 3*2^(2*e-2), and a(p^e) = p^(2*e) for odd primes p. - Amiram Eldar, Oct 26 2020

MATHEMATICA

a[n_] := If[OddQ[n], n^2, 3 n^2/4]; Table[a[n], {n, 0, 55}]

nmax = 55; CoefficientList[Series[x (1 + 3 x + 6 x^2 + 3 x^3 + x^4)/(1 - x^2)^3, {x, 0, nmax}], x]

LinearRecurrence[{0, 3, 0, -3, 0, 1}, {0, 1, 3, 9, 12, 25}, 56]

Table[(7 - (-1)^n) n^2/8, {n, 0, 55}]

CROSSREFS

Cf. A000290, A007434, A016754, A026741, A033428, A076577, A308418.

Sequence in context: A303192 A261957 A261951 * A081601 A244018 A261950

Adjacent sequences:  A308419 A308420 A308421 * A308423 A308424 A308425

KEYWORD

nonn,easy,mult

AUTHOR

Ilya Gutkovskiy, May 26 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 17:50 EDT 2021. Contains 343920 sequences. (Running on oeis4.)