OFFSET
0,3
FORMULA
E.g.f.: exp(Sum_{k>=1} J_2(k)*x^k/(1 - x^(2*k))), where J_2() is the Jordan function (A007434).
E.g.f.: Product_{k>=1} (1 + x^k)^(J_3(k)/k), where J_3() is the Jordan function (A059376).
a(n) ~ 2^(-5/4) * 21^(1/8) * n^(n - 1/8) * exp(2^(3/2) * 3^(-3/4) * 7^(1/4) * n^(3/4) - n). - Vaclav Kotesovec, May 28 2019
E.g.f.: exp(Sum_{k>=1} A308422(k)*x^k). - Ilya Gutkovskiy, May 29 2019
MATHEMATICA
nmax = 19; CoefficientList[Series[Exp[x (1 + 3 x + 6 x^2 + 3 x^3 + x^4)/(1 - x^2)^3], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 19; CoefficientList[Series[Product[(1 + x^k)^(DirichletConvolve[j^3, MoebiusMu[j], j, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[1/8 (7 - (-1)^k) k^2 k! Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 19}]
PROG
(PARI) my(x ='x + O('x^30)); Vec(serlaplace(exp(x*(1+3*x+6*x^2+3*x^3+x^4)/(1-x^2)^3))) \\ Michel Marcus, May 26 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 25 2019
STATUS
approved