login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A308417 Expansion of e.g.f. exp(x*(1 + x + x^2)/(1 - x^2)^2). 1
1, 1, 3, 25, 145, 1461, 14011, 169933, 2231265, 32572585, 528302611, 9146070561, 174016032433, 3498446485405, 75954922790475, 1737982233878101, 42327522277348801, 1084073452000879953, 29253450397798616995, 827617575903336189865, 24503022168956714812881 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..20.

FORMULA

E.g.f.: exp(Sum_{k>=1} A026741(k)*x^k).

E.g.f.: Product_{k>=1} (1 + x^k)^(J_2(k)/k), where J_2() is the Jordan function (A007434).

a(0) = 1; a(n) = Sum_{k=1..n} A026741(k)*k!*binomial(n-1,k-1)*a(n-k).

a(n) ~ 2^(-1/6) * 3^(-1/3) * n^(n - 1/6) * exp((3/2)^(4/3) * n^(2/3) - n). - Vaclav Kotesovec, May 29 2019

MATHEMATICA

nmax = 20; CoefficientList[Series[Exp[x (1 + x + x^2)/(1 - x^2)^2], {x, 0, nmax}], x] Range[0, nmax]!

nmax = 20; CoefficientList[Series[Product[(1 + x^k)^(DirichletConvolve[j^2, MoebiusMu[j], j, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

a[n_] := a[n] = Sum[Numerator[k/2] k! Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 20}]

PROG

(PARI) my(x ='x + O('x^30)); Vec(serlaplace(exp(x*(1 + x + x^2)/(1 - x^2)^2))) \\ Michel Marcus, May 26 2019

CROSSREFS

Cf. A007434, A026741, A082579, A088009, A301876, A308418.

Sequence in context: A034578 A265874 A144646 * A277520 A303602 A000544

Adjacent sequences:  A308414 A308415 A308416 * A308418 A308419 A308420

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, May 25 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 06:51 EST 2020. Contains 338944 sequences. (Running on oeis4.)