The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A308417 Expansion of e.g.f. exp(x*(1 + x + x^2)/(1 - x^2)^2). 1
 1, 1, 3, 25, 145, 1461, 14011, 169933, 2231265, 32572585, 528302611, 9146070561, 174016032433, 3498446485405, 75954922790475, 1737982233878101, 42327522277348801, 1084073452000879953, 29253450397798616995, 827617575903336189865, 24503022168956714812881 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA E.g.f.: exp(Sum_{k>=1} A026741(k)*x^k). E.g.f.: Product_{k>=1} (1 + x^k)^(J_2(k)/k), where J_2() is the Jordan function (A007434). a(0) = 1; a(n) = Sum_{k=1..n} A026741(k)*k!*binomial(n-1,k-1)*a(n-k). a(n) ~ 2^(-1/6) * 3^(-1/3) * n^(n - 1/6) * exp((3/2)^(4/3) * n^(2/3) - n). - Vaclav Kotesovec, May 29 2019 MATHEMATICA nmax = 20; CoefficientList[Series[Exp[x (1 + x + x^2)/(1 - x^2)^2], {x, 0, nmax}], x] Range[0, nmax]! nmax = 20; CoefficientList[Series[Product[(1 + x^k)^(DirichletConvolve[j^2, MoebiusMu[j], j, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! a[n_] := a[n] = Sum[Numerator[k/2] k! Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 20}] PROG (PARI) my(x ='x + O('x^30)); Vec(serlaplace(exp(x*(1 + x + x^2)/(1 - x^2)^2))) \\ Michel Marcus, May 26 2019 CROSSREFS Cf. A007434, A026741, A082579, A088009, A301876, A308418. Sequence in context: A034578 A265874 A144646 * A277520 A303602 A000544 Adjacent sequences:  A308414 A308415 A308416 * A308418 A308419 A308420 KEYWORD nonn AUTHOR Ilya Gutkovskiy, May 25 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 06:51 EST 2020. Contains 338944 sequences. (Running on oeis4.)