login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308417
Expansion of e.g.f. exp(x*(1 + x + x^2)/(1 - x^2)^2).
1
1, 1, 3, 25, 145, 1461, 14011, 169933, 2231265, 32572585, 528302611, 9146070561, 174016032433, 3498446485405, 75954922790475, 1737982233878101, 42327522277348801, 1084073452000879953, 29253450397798616995, 827617575903336189865, 24503022168956714812881
OFFSET
0,3
FORMULA
E.g.f.: exp(Sum_{k>=1} A026741(k)*x^k).
E.g.f.: Product_{k>=1} (1 + x^k)^(J_2(k)/k), where J_2() is the Jordan function (A007434).
a(0) = 1; a(n) = Sum_{k=1..n} A026741(k)*k!*binomial(n-1,k-1)*a(n-k).
a(n) ~ 2^(-1/6) * 3^(-1/3) * n^(n - 1/6) * exp((3/2)^(4/3) * n^(2/3) - n). - Vaclav Kotesovec, May 29 2019
MATHEMATICA
nmax = 20; CoefficientList[Series[Exp[x (1 + x + x^2)/(1 - x^2)^2], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 20; CoefficientList[Series[Product[(1 + x^k)^(DirichletConvolve[j^2, MoebiusMu[j], j, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[Numerator[k/2] k! Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 20}]
PROG
(PARI) my(x ='x + O('x^30)); Vec(serlaplace(exp(x*(1 + x + x^2)/(1 - x^2)^2))) \\ Michel Marcus, May 26 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 25 2019
STATUS
approved