login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. exp(x*(1 + x + x^2)/(1 - x^2)^2).
1

%I #11 May 29 2019 04:12:14

%S 1,1,3,25,145,1461,14011,169933,2231265,32572585,528302611,9146070561,

%T 174016032433,3498446485405,75954922790475,1737982233878101,

%U 42327522277348801,1084073452000879953,29253450397798616995,827617575903336189865,24503022168956714812881

%N Expansion of e.g.f. exp(x*(1 + x + x^2)/(1 - x^2)^2).

%F E.g.f.: exp(Sum_{k>=1} A026741(k)*x^k).

%F E.g.f.: Product_{k>=1} (1 + x^k)^(J_2(k)/k), where J_2() is the Jordan function (A007434).

%F a(0) = 1; a(n) = Sum_{k=1..n} A026741(k)*k!*binomial(n-1,k-1)*a(n-k).

%F a(n) ~ 2^(-1/6) * 3^(-1/3) * n^(n - 1/6) * exp((3/2)^(4/3) * n^(2/3) - n). - _Vaclav Kotesovec_, May 29 2019

%t nmax = 20; CoefficientList[Series[Exp[x (1 + x + x^2)/(1 - x^2)^2], {x, 0, nmax}], x] Range[0, nmax]!

%t nmax = 20; CoefficientList[Series[Product[(1 + x^k)^(DirichletConvolve[j^2, MoebiusMu[j], j, k]/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

%t a[n_] := a[n] = Sum[Numerator[k/2] k! Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 20}]

%o (PARI) my(x ='x + O('x^30)); Vec(serlaplace(exp(x*(1 + x + x^2)/(1 - x^2)^2))) \\ _Michel Marcus_, May 26 2019

%Y Cf. A007434, A026741, A082579, A088009, A301876, A308418.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, May 25 2019