login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081601
Numbers n such that 3 does not divide Sum_{k=0..n} binomial(2k,k) = A006134(n).
6
0, 3, 9, 12, 27, 30, 36, 39, 81, 84, 90, 93, 108, 111, 117, 120, 243, 246, 252, 255, 270, 273, 279, 282, 324, 327, 333, 336, 351, 354, 360, 363, 729, 732, 738, 741, 756, 759, 765, 768, 810, 813, 819, 822, 837, 840, 846, 849, 972, 975, 981, 984, 999, 1002, 1008, 1011
OFFSET
1,2
COMMENTS
Apparently a(n)/3 mod 2 = A010060(n-1), the Thue-Morse sequence.
a(n+1) is the smallest number with exactly n+1 partitions into distinct powers of 2 or of 3: A131996(a(n+1)) = n+1 and A131996(m) < n+1 for m < a(n+1). - Reinhard Zumkeller, Aug 06 2007
FORMULA
Apparently a(n) = 3*A005836(n).
G.f.: (x/(1 - x))*Sum_{k>=0} 3^(k+1)*x^(2^k)/(1 + x^(2^k)) (conjecture). - Ilya Gutkovskiy, Jul 23 2017
EXAMPLE
For n=0, A006134(0) = 1, hence 0 is a term.
MATHEMATICA
Select[Range[0, 1020], Mod[Sum[Binomial[2 k, k], {k, 0, #}], 3] != 0 &] (* Michael De Vlieger, Nov 28 2015 *)
PROG
(PARI) for(n=0, 1e3, if(sum(k=0, n, binomial(2*k, k)) % 3 > 0, print1(n, ", "))) \\ Altug Alkan, Nov 26 2015
CROSSREFS
Equals A089118(n-2) + 1, n > 1.
Sequence in context: A261957 A261951 A308422 * A244018 A261950 A366065
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Apr 22 2003
EXTENSIONS
Zero prepended to the sequence and formulas modified accordingly by L. Edson Jeffery, Nov 25 2015
STATUS
approved