login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081600
Let n = 10x + y where 0 <= y <= 9, x >= 0. Then a(n) = 9x+y.
3
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 108, 109, 110
OFFSET
0,3
COMMENTS
More than the usual number of terms are displayed in order to distinguish this from some closely related sequences. - N. J. A. Sloane, Mar 22 2014
FORMULA
G.f.: x*(x^2 +x +1)*(x^6 +x^3 +1) / ((x -1)^2*(x +1)*(x^4 -x^3 +x^2 -x +1)*(x^4 +x^3 +x^2 +x +1)). - Colin Barker, Jun 24 2014
a(n) = n - floor(n/10). - Bruno Berselli, Jun 24 2014
MAPLE
f1:=proc(n) local x, y;
y:= (n mod 10);
x:=(n-y)/10;
9*x+y;
end;
[seq(f1(n), n=0..200)];
PROG
(PARI) my(n, x, y); vector(500, n, y=(n-1)%10; x=(n-1-y)\10; 9*x+y) \\ Colin Barker, Jun 23 2014
(PARI) a(n)=n - n\10 \\ Charles R Greathouse IV, Sep 01 2015
(Magma) k:=9; [n-(10-k)*Floor(n/10): n in [0..150]]; // Bruno Berselli, Jun 24 2014
CROSSREFS
Cf. A081502. Different from A028904.
Sequence in context: A245339 A324161 A028904 * A239092 A017884 A072139
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 22 2003
STATUS
approved