login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081597
Let n = 10*x + y where 0 <= y <= 9, x >= 0. Then a(n) = 6*x + y.
2
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 42, 43, 44, 45, 46, 47
OFFSET
0,3
LINKS
FORMULA
G.f.: -x*(3*x^9 -x^8 -x^7 -x^6 -x^5 -x^4 -x^3 -x^2 -x -1) / ((x -1)^2*(x +1)*(x^4 -x^3 +x^2 -x +1)*(x^4 +x^3 +x^2 +x +1)). - Colin Barker, Jun 24 2014
a(n) = n - 4*floor(n/10). [Bruno Berselli, Jun 24 2014]
a(n) = a(n-1) + a(n-10) - a(n-11) for n > 10. - Chai Wah Wu, Apr 25 2017
MAPLE
A081597:=n->n-4*floor(n/10): seq(A081597(n), n=0..150); # Wesley Ivan Hurt, Apr 25 2017
MATHEMATICA
CoefficientList[Series[-x (3 x^9 - x^8 - x^7 - x^6 - x^5 - x^4 - x^3 - x^2 - x - 1)/((x - 1)^2 (x + 1) (x^4 - x^3 + x^2 - x + 1) (x^4 + x^3 + x^2 + x + 1)), {x, 0, 150}], x] (* Vincenzo Librandi, Jun 25 2014 *)
PROG
(PARI) my(n, x, y); vector(200, n, y=(n-1)%10; x=(n-1-y)\10; 6*x+y) \\ Colin Barker, Jun 24 2014
(Magma) k:=6; [n-(10-k)*Floor(n/10): n in [0..10]]; // Bruno Berselli, Jun 24 2014
CROSSREFS
Cf. A081502. Different from A028901.
Sequence in context: A079827 A216196 A028901 * A351578 A328469 A373229
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 22 2003
STATUS
approved