login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let n = 10*x + y where 0 <= y <= 9, x >= 0. Then a(n) = 6*x + y.
2

%I #22 Sep 08 2022 08:45:09

%S 0,1,2,3,4,5,6,7,8,9,6,7,8,9,10,11,12,13,14,15,12,13,14,15,16,17,18,

%T 19,20,21,18,19,20,21,22,23,24,25,26,27,24,25,26,27,28,29,30,31,32,33,

%U 30,31,32,33,34,35,36,37,38,39,36,37,38,39,40,41,42,43,44,45,42,43,44,45,46,47

%N Let n = 10*x + y where 0 <= y <= 9, x >= 0. Then a(n) = 6*x + y.

%H Vincenzo Librandi, <a href="/A081597/b081597.txt">Table of n, a(n) for n = 0..2000</a>

%F G.f.: -x*(3*x^9 -x^8 -x^7 -x^6 -x^5 -x^4 -x^3 -x^2 -x -1) / ((x -1)^2*(x +1)*(x^4 -x^3 +x^2 -x +1)*(x^4 +x^3 +x^2 +x +1)). - _Colin Barker_, Jun 24 2014

%F a(n) = n - 4*floor(n/10). [_Bruno Berselli_, Jun 24 2014]

%F a(n) = a(n-1) + a(n-10) - a(n-11) for n > 10. - _Chai Wah Wu_, Apr 25 2017

%p A081597:=n->n-4*floor(n/10): seq(A081597(n), n=0..150); # _Wesley Ivan Hurt_, Apr 25 2017

%t CoefficientList[Series[-x (3 x^9 - x^8 - x^7 - x^6 - x^5 - x^4 - x^3 - x^2 - x - 1)/((x - 1)^2 (x + 1) (x^4 - x^3 + x^2 - x + 1) (x^4 + x^3 + x^2 + x + 1)), {x, 0, 150}], x] (* _Vincenzo Librandi_, Jun 25 2014 *)

%o (PARI) my(n, x, y); vector(200, n, y=(n-1)%10; x=(n-1-y)\10; 6*x+y) \\ _Colin Barker_, Jun 24 2014

%o (Magma) k:=6; [n-(10-k)*Floor(n/10): n in [0..10]]; // _Bruno Berselli_, Jun 24 2014

%Y Cf. A081502. Different from A028901.

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_, Apr 22 2003