login
A017884
Expansion of 1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17).
10
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 10, 12, 15, 19, 24, 30, 37, 45, 53, 61, 70, 81, 95, 113, 136, 165, 201, 245, 296, 354, 420, 496, 585, 691, 819, 975, 1167, 1402, 1686, 2025
OFFSET
0,20
COMMENTS
Number of compositions (ordered partitions) of n into parts 9, 10, 11, 12, 13, 14, 15, 16 and 17. - Ilya Gutkovskiy, May 27 2017
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1).
FORMULA
a(n) = a(n-9) +a(n-10) +a(n-11) +a(n-12) +a(n-13) +a(n-14) +a(n-15) +a(n-16) +a(n-17) for n>16. - Vincenzo Librandi, Jul 01 2013
MATHEMATICA
CoefficientList[Series[1 / (1 - Total[x^Range[9, 17]]), {x, 0, 60}], x] (* Harvey P. Dale, Sep 12 2012 *)
PROG
(Magma)
m:=70; R<x>:=PowerSeriesRing(Integers(), m);
Coefficients(R!(1/(1-x^9-x^10-x^11-x^12-x^13-x^14-x^15-x^16-x^17))); // Vincenzo Librandi, Jul 01 2013
(SageMath)
def A017884_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x)/(1-x-x^9+x^(18)) ).list()
A017884_list(70) # G. C. Greubel, Sep 25 2024
KEYWORD
nonn,easy
STATUS
approved